
On the Convergence of Encoder-only Shallow Transformers

Fanghui Liu

Department of Computer Science, University of Warwick, UK
Centre for Discrete Mathematics and its Applications (DIMAP), Warwick

Based on joint work with

[Yongtao Wu (EPFL), Fanghui Liu, Grigorios Chrysos (UW-Madison), Volkan Cevher (EPFL)]

at MILD Seminar, University of British Columbia



Over-parameterization: more parameters than training data

MLP:
<< 1 million
parameters

ResNet-152:
60.3 million
parameters
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340 million
parameters
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Figure: Left: Vision Transformer(ViT) [1], based on the encoder of Transformer. Middle: Original Transformer [2], with encoder
and decoder. Right: ChatGPT, based on the decoder of Transformer.
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Self-attention
I input X ∈ Rds×d

I σs: soft-max (row-wise)
I WQ, WK , WV ∈ Rdm×d

I ds: number of tokens
I d: the feature dimension of each token
I dm: width

Self-attention(X) , Softmax
(

τ0(XW>
Q)

(
XW>

K

)>
) (

XW>
V

)
= σs

(
τ0XW>

QWK X>
) (

XW>
V

)
.

input of softmax: [τ0W>
QWK ]ij = τ0

dm∑
k=1

[W>
Q]ik[WK ]kj

◦ scaling schemes given by WQ, WK initialized by standard Gaussian
I τ0 = d

−1/2
m in the original Transformer [2]:

[τ0W>
QWK ]ij has zero-mean and unit variance ∀i, j ∈ [d]

I τ0 = d−1
m : from the neural tangent kernel (NTK) analysis [3] for dm → ∞.

lim
dm→∞

τ0[W>
QWK ](ij) = lim

dm→∞

1
dm

dm∑
k=1

[W>
Q]ik[WK ]kj = 0 .

Softmax becomes a pooling layer!

Convergence of Transformers | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 3/ 15



Self-attention
I input X ∈ Rds×d

I σs: soft-max (row-wise)
I WQ, WK , WV ∈ Rdm×d

I ds: number of tokens
I d: the feature dimension of each token
I dm: width

Self-attention(X) , Softmax
(

τ0(XW>
Q)

(
XW>

K

)>
) (

XW>
V

)
= σs

(
τ0XW>

QWK X>
) (

XW>
V

)
.

input of softmax: [τ0W>
QWK ]ij = τ0

dm∑
k=1

[W>
Q]ik[WK ]kj

◦ scaling schemes given by WQ, WK initialized by standard Gaussian
I τ0 = d

−1/2
m in the original Transformer [2]:

[τ0W>
QWK ]ij has zero-mean and unit variance ∀i, j ∈ [d]

I τ0 = d−1
m : from the neural tangent kernel (NTK) analysis [3] for dm → ∞.

lim
dm→∞

τ0[W>
QWK ](ij) = lim

dm→∞

1
dm

dm∑
k=1

[W>
Q]ik[WK ]kj = 0 .

Softmax becomes a pooling layer!

Convergence of Transformers | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 3/ 15



Self-attention
I input X ∈ Rds×d

I σs: soft-max (row-wise)
I WQ, WK , WV ∈ Rdm×d

I ds: number of tokens
I d: the feature dimension of each token
I dm: width

Self-attention(X) , Softmax
(

τ0(XW>
Q)

(
XW>

K

)>
) (

XW>
V

)
= σs

(
τ0XW>

QWK X>
) (

XW>
V

)
.

input of softmax: [τ0W>
QWK ]ij = τ0

dm∑
k=1

[W>
Q]ik[WK ]kj

◦ scaling schemes given by WQ, WK initialized by standard Gaussian
I τ0 = d

−1/2
m in the original Transformer [2]:

[τ0W>
QWK ]ij has zero-mean and unit variance ∀i, j ∈ [d]

I τ0 = d−1
m : from the neural tangent kernel (NTK) analysis [3] for dm → ∞.

lim
dm→∞

τ0[W>
QWK ](ij) = lim

dm→∞

1
dm

dm∑
k=1

[W>
Q]ik[WK ]kj = 0 .

Softmax becomes a pooling layer!

Convergence of Transformers | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 3/ 15



Self-attention
I input X ∈ Rds×d

I σs: soft-max (row-wise)
I WQ, WK , WV ∈ Rdm×d

I ds: number of tokens
I d: the feature dimension of each token
I dm: width

Self-attention(X) , Softmax
(

τ0(XW>
Q)

(
XW>

K

)>
) (

XW>
V

)
= σs

(
τ0XW>

QWK X>
) (

XW>
V

)
.

input of softmax: [τ0W>
QWK ]ij = τ0

dm∑
k=1

[W>
Q]ik[WK ]kj

◦ scaling schemes given by WQ, WK initialized by standard Gaussian

I τ0 = d
−1/2
m in the original Transformer [2]:

[τ0W>
QWK ]ij has zero-mean and unit variance ∀i, j ∈ [d]

I τ0 = d−1
m : from the neural tangent kernel (NTK) analysis [3] for dm → ∞.

lim
dm→∞

τ0[W>
QWK ](ij) = lim

dm→∞

1
dm

dm∑
k=1

[W>
Q]ik[WK ]kj = 0 .

Softmax becomes a pooling layer!

Convergence of Transformers | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 3/ 15



Self-attention
I input X ∈ Rds×d

I σs: soft-max (row-wise)
I WQ, WK , WV ∈ Rdm×d

I ds: number of tokens
I d: the feature dimension of each token
I dm: width

Self-attention(X) , Softmax
(

τ0(XW>
Q)

(
XW>

K

)>
) (

XW>
V

)
= σs

(
τ0XW>

QWK X>
) (

XW>
V

)
.

input of softmax: [τ0W>
QWK ]ij = τ0

dm∑
k=1

[W>
Q]ik[WK ]kj

◦ scaling schemes given by WQ, WK initialized by standard Gaussian
I τ0 = d

−1/2
m in the original Transformer [2]:

[τ0W>
QWK ]ij has zero-mean and unit variance ∀i, j ∈ [d]

I τ0 = d−1
m : from the neural tangent kernel (NTK) analysis [3] for dm → ∞.

lim
dm→∞

τ0[W>
QWK ](ij) = lim

dm→∞

1
dm

dm∑
k=1

[W>
Q]ik[WK ]kj = 0 .

Softmax becomes a pooling layer!

Convergence of Transformers | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 3/ 15



Self-attention
I input X ∈ Rds×d

I σs: soft-max (row-wise)
I WQ, WK , WV ∈ Rdm×d

I ds: number of tokens
I d: the feature dimension of each token
I dm: width

Self-attention(X) , Softmax
(

τ0(XW>
Q)

(
XW>

K

)>
) (

XW>
V

)
= σs

(
τ0XW>

QWK X>
) (

XW>
V

)
.

input of softmax: [τ0W>
QWK ]ij = τ0

dm∑
k=1

[W>
Q]ik[WK ]kj

◦ scaling schemes given by WQ, WK initialized by standard Gaussian
I τ0 = d

−1/2
m in the original Transformer [2]:

[τ0W>
QWK ]ij has zero-mean and unit variance ∀i, j ∈ [d]

I τ0 = d−1
m : from the neural tangent kernel (NTK) analysis [3] for dm → ∞.

lim
dm→∞

τ0[W>
QWK ](ij) = lim

dm→∞

1
dm

dm∑
k=1

[W>
Q]ik[WK ]kj = 0 .

Softmax becomes a pooling layer!

Convergence of Transformers | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 3/ 15



Self-attention
I input X ∈ Rds×d

I σs: soft-max (row-wise)
I WQ, WK , WV ∈ Rdm×d

I ds: number of tokens
I d: the feature dimension of each token
I dm: width

Self-attention(X) , Softmax
(

τ0(XW>
Q)

(
XW>

K

)>
) (

XW>
V

)
= σs

(
τ0XW>

QWK X>
) (

XW>
V

)
.

input of softmax: [τ0W>
QWK ]ij = τ0

dm∑
k=1

[W>
Q]ik[WK ]kj

◦ scaling schemes given by WQ, WK initialized by standard Gaussian
I τ0 = d

−1/2
m in the original Transformer [2]:

[τ0W>
QWK ]ij has zero-mean and unit variance ∀i, j ∈ [d]

I τ0 = d−1
m : from the neural tangent kernel (NTK) analysis [3] for dm → ∞.

lim
dm→∞

τ0[W>
QWK ](ij) = lim

dm→∞

1
dm

dm∑
k=1

[W>
Q]ik[WK ]kj = 0 .

Softmax becomes a pooling layer!
Convergence of Transformers | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 3/ 15



Previous attempts on scaling in theory

[τ0W>
QWK ]ij

◦ scaling schemes given by WQ, WK initialized by standard Gaussian

I τ0 = d
−1/2
m in the original Transformer [2]:

[τ0W>
QWK ]ij has zero-mean and unit variance ∀i, j ∈ [d]

[4] : ����XXXXSoftmax︸     ︷︷     ︸
ReLU

(
τ0(XW>

Q)
(

XW>
K

)>
) (

XW>
V

)
I τ0 = d−1

m : from the neural tangent kernel (NTK) analysis [3] for dm → ∞.

lim
dm→∞

τ0[W>
QWK ](ij) = lim

dm→∞

1
dm

dm∑
k=1

[W>
Q]ik[WK ]kj = 0 .

[5] : setting WQ = WK
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Question
How can we do analysis of Transformers under a realistic setting?

even though
I a shallow Transformer
I an encoder-only shallow Transformer
I global convergence
I under the lazy training regime

W(0) W(t)

lazy training regime

Lecun, He

NTK

supt∈[0,+∞)

∥
Wl(t)−Wl(0)

∥
F∥

Wl(0)
∥

F
→ 0

Figure: Training dynamics of two-layer ReLU NNs with infinite width under different initializations [3, 6, 7].
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Problem setting: encoder-only shallow Transformer

A1 = Self-attention(X) , σs

(
τ0(XW>

Q)
(

XW>
K

)>
) (

XW>
V

)
,

A2 = τ1σr(A1WH) , a3 = ϕ(A2), f(X; θ) = a>
3 wO .

I Input: X ∈ Rds×d (ds is the number of tokens and d is the feature dimension of each token)

I A self-attention layer: σs is the row-wise softmax function and the learnable parameters are
WQ, WK , WV ∈ Rdm×d.

I A feed-forward ReLU layer: σr is the ReLU activation function; the learnable parameter is WH ∈ Rdm×dm .
We assume WH = I.

I An average pooling layer: ϕ indicates the column-wise average pooling.
I An output layer with learnable parameter wO ∈ Rdm .

Initialization ηO ηV ηQ ηK τ1

LeCun d−1
m d−1 d−1 d−1 1

He 2d−1
m 2d−1 2d−1 2d−1 1

NTK 1 1 1 1 d
−1/2
m
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Training by gradient descent

I data {(Xi, yi)}n
i=1 with y = [y1, y2, · · · , yn]>

I model output f(θ) := [f(X1; θ), f(X2; θ), · · · , f(Xn; θ)]>

`(θ) =
1
2

‖ f(θ) − y‖2
2

Algorithm 1: Gradient descent training
Input: data (Xi, yi)n

i=1, step size γ.
Initialize weights as follows:
θ0 := {W0

Q, W0
K , W0

V , W0
O}.

for t = 0 to t′ − 1 do
Wt+1

Q = Wt
Q − γ · ∇WQ

`(θt), Wt+1
K = Wt

K − γ · ∇WK
`(θt),

Wt+1
V = Wt

V − γ · ∇WV
`(θt), Wt+1

O = Wt
O − γ · ∇WO

`(θt).
end for
Output: the model based on θt′ .
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Assumptions on data

Assumption (Bounded data)
The input data is bounded ‖X‖F ≤

√
dsCx with some positive constant Cx.

◦ The embedding of token can have a unit norm [8] independent of d.

Assumption
The input data X has full row rank.

◦ language tasks: added with positional embedding
◦ ViT: image grouped by patch and can be uncorrelated

Assumption (different data have smaller similarity)
For any data pair (Xi, Xj), with i , j and i, j ∈ [n], then we
assume that P

(∣∣〈X>
i Xi, X>

j Xj

〉∣∣ ≥ t
)

≤ exp(−tĉ) with some
constant ĉ > 0.

◦ larger ĉ ⇒ more diverse data ⇒ more separable
◦ validated on a language IMDB dataset (sampling with 100
normalized sentences with embedding) 0.00 0.25 0.50 0.75

t

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
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Main results: Global convergence

Theorem (Under τ0 = d
−1/2
m )

Assume dm ≥ d, under LeCun/He (NTK) initialization and dm = Ω̃(n3) (dm = Ω̃(n2)), with probability at
least 1 − 8e− dm

2 − δ − exp(−Ω(n − 1)−ĉd−1
s ) for proper δ, choosing the step-size γ ≤ O(n− 1

2 ), then the GD
training of the Transformer converges to a global minimum as follows:

`(θt) ≤
(

1 − γ
α2

2

)t

`(θ0), for t ≥ 0 . (2)

Theorem (Under τ0 = d−1
m )

Under the NTK initialization, denote Φ∗ := 1
ds

[X>
1 1ds , · · · , X>

n1ds ]> ∈ Rn×d, the limiting kernel matrix will
depend on Φ∗, and with dm = Ω(n), the GD training of Transformer converges as Eq. (2).

Remark: 1) dimension missing: self-attention layer becomes XW>
V

2) τ0 = d−1
m and NTK initialization make Transformer

I enter into the lazy training regime easier
I require less over-parameterization requirement
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depend on Φ∗, and with dm = Ω(n), the GD training of Transformer converges as Eq. (2).

Remark: 1) dimension missing: self-attention layer becomes XW>
V

2) τ0 = d−1
m and NTK initialization make Transformer

I enter into the lazy training regime easier
I require less over-parameterization requirement
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Proof framework
Polyak-Lojasiewicz (PL) inequality + Lipchitz continuous of gradient, defining Fpre := ∂ f(X)

∂wo
∈ Rn×dm

||∇`(θ)||22 ≥ 2λmin(FpreF>
pre)`(θ)

`(θt+1) ≤ `(θt) −
γ

2
λmin(FpreF>

pre)‖ f t − y‖2
2 ≤ (1 −

γα

2
)`(θt)

Lemma (minimum eigenvalue estimation)
Let Φ = [X1β1,1, X2β1,2, · · · , Xnβ1,n]> ∈ Rn×d where β1,i is the i-th output of softmax, then under our
assumptions, we have

ηV /ds . λ0 := λmin
(
Ew∼N (0,ηV Id)[σr(Φw)σr(Φw)>]

)
. ηV ds w.h.p

Proof.
I Hermite expansion: λ0 > λmin[ΦΦ>]
I Gershgorin circle theorem: λmin[ΦΦ>] ≥ Ω(‖β1,k‖2

2)
�
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Discussion on α

under LeCun initialization, we have α2 ≥ dmλ0/4 ≥ dmηV µ(σr)2Θ(‖β1,k‖2
2)

I τ = d
−1/2
m , we have ‖β1,k‖2

2 ≥ 1/ds

I τ = d−1
m , we have ‖β1,k‖2

2 ≈ 1/ds

different initializations: α2 ≥ τ2
1 ηV dmΩ(1/d)

I LeCun/He initialization: α2 ≥ Ω(dm/d)
I NTK initialization: α2 ≥ Ω(1/d)

architectures under LeCun initialization:
I self-attention + two-layer ReLU NN: Ω(n3) over-parameterization
I three-layer ReLU NN: Ω(n3) over-parameterization
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Experimental validations (width matters)
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(a) Convergence curve.

0 50 100 150 200 250 300 350 400

Epochs

10 2

10 1

100

Ch
an

ge
 o

f w
ei

gh
ts

: ||
t

0 ||
2

||
0 ||

2

dm=10
dm=100
dm=1000
dm=4000

(b) Weight movement.
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(c) Kernel distance.

Figure: Visualization of the training process of Transformers with LeCun initialization and τ0 = d−1/2
m scaling on synthetic

data. (a) Linear convergence. (b) Rate of change of the weights during training. Observe that the weights change very slowly
after the 50th epoch. (c) Evolution of the NTK during the training. The result mirrors the plot (b) and demonstrates how the
kernel varies significantly at the beginning of the training and remains approximately constant later. As the width increases, the
empirical NTK becomes more stable.
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Separation between d−1
m and d

−1/2
m
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(a) Training loss
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Figure: Results on MNIST dataset trained by ViT with different scaling schemes.
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(b) Attention map, dm = 16384.

Figure: Results on MNIST dataset trained by ViT with different scaling schemes.
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Conclusion

I scaling factor τ0: d
−1/2
m vs. d−1

m

I initializations: LeCun/He vs. NTK

Future direction
I Architecture: benefits of attention
I Optimization objective: implicit bias
I Application: in-context learning, chain-of-thought reasoning
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Thanks for your attention!

Q & A
my homepage www.lfhsgre.org for more information!
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