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ABSTRACT

We show that a variety of modern deep learning tasks exhibit a “double-descent”
phenomenon where, as we increase model size, performance first gets worse and
then gets better. Moreover, we show that double descent occurs not just as a
function of model size, but also as a function of the number of training epochs.
We unify the above phenomena by defining a new complexity measure we call
the effective model complexity and conjecture a generalized double descent with
respect to this measure. Furthermore, our notion of model complexity allows us to
identify certain regimes where increasing (even quadrupling) the number of train
samples actually hurts test performance.

1 INTRODUCTION

Figure 1: Left: Train and test error as a function of model size, for ResNet18s of varying width
on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. All models
trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.

The bias-variance trade-off is a fundamental concept in classical statistical learning theory (e.g.,
Hastie et al. (2005)). The idea is that models of higher complexity have lower bias but higher vari-
ance. According to this theory, once model complexity passes a certain threshold, models “overfit”
with the variance term dominating the test error, and hence from this point onward, increasing model
complexity will only decrease performance (i.e., increase test error). Hence conventional wisdom
in classical statistics is that, once we pass a certain threshold, “larger models are worse.”

However, modern neural networks exhibit no such phenomenon. Such networks have millions of
parameters, more than enough to fit even random labels (Zhang et al. (2016)), and yet they perform
much better on many tasks than smaller models. Indeed, conventional wisdom among practitioners
is that “larger models are better’’ (Krizhevsky et al. (2012), Huang et al. (2018), Szegedy et al.
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cially thank Mikhail Belkin and Christopher Olah for helpful discussions throughout this work. Correspondence
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(a) Training and test error on ResNet18 [1]

A

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd→C of the form

h(x )=

N∑
k=1

akφ(x ; vk ) where φ(x ; v):=e
√
−1〈vk ,x〉,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N →∞, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H∞. While it is possible to directly use
H∞ [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd ×R, we find the predictor hn,N ∈
HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

∑n
i=1(h(xi)− yi)

2 over all functions h ∈HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm ‖h‖H∞ , which is generally
difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

(b) Double descent [2] (Belkin, Hsu, Ma, Mandal, 2019).

Observations: beyond bias-variance trade-off
I 1) Monotonic decreasing in the overparameterized regime
I 2) Global minimum when #parameters is infinite
I 3) Peak at the interpolation thresholds
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Today’s talk: Function spaces vs. Models (initialization matters)

kernel
methods

random
features

neural
networks

RKHS kernel methods1

hyper-RKHS hyper-kernel methods2

Barron space two-layer NNs3

Besov space deep NNs4

bivariate form

variational form

smoothness

Fanghui Liu web: https: // www. lfhsgre. org/ fanghui.liu@epfl.ch

Research Statement
Understanding generalization in machine learning algorithms: a function approximation perspective

Understanding and predicting the unknown and uncertain real world from past observations is
always an enduring appealing and outstanding topic in artificial intelligence. My research attempts
to achieve this ultimate and ideal goal by concentrating on theoretical understanding generalization
properties of machine learning algorithms. The “generalization” terminology means that a machine
learning model, learned from the past observations, is able to generalize on unseen data in super-
vised learning. This concept is also suitable to sequential decision, e.g., reinforcement learning (RL)
that an agent needs to learn how to predict and control unknown and often stochastic environments,
i.e., exploration.

Achieving this goal requires to study what regularizer Ω(f) can be defined and controlled on the
functions defined by models, and what function space F is suitable for learning.

The commonly used function space in learning theory is the reproducing kernel Hilbert space
(RKHS) [Aro50], which provides the ability to approximate functions by nonparametric functional
representations. The point-wise convergence property makes RKHS an appealing choice in ma-
chine learning problems with nice theoretical guarantees in an approximation theory view. My
major research interests starts with kernel learning algorithms, kernel approximation for scalabil-
ity, and theoretically understanding machine learning algorithms in under- and over-parameterized
regimes.

random
features

kernel
methods

neural
networks

scalability

over-parameterization
NTK

RKHS hyper-RKHS Barron space Besov space

kernel methods hyper-kernel methods two-layer NNs DNNs

kernel learning kernel learning double descent generalization, RL

Laplace in E Laplace in N Laplace in N

Legendre in ϵ = E
N Legendre in ρ = N

V
Legendre in ρ = N

V

1 Current achievements
My research endeavour has led to several scientific contributions at the flagship conferences and
journals in machine learning. Here I center around the work in recent years on learning in hyper-
RKHS [LSH+21, JMLR21], kernel approximation via random features, double descent [LSC22,
NeurIPS22], deep neural function approximation [LVC22, NeurIPS22].

1.1 Learning with kernels and random features

Learning in hyper-RKHS: The structure of RKHS is determined by the reproducing kernel
k, but selecting appropriate kernels is not a trivial task. More importantly, RKHS is not large
enough, for example, to approximate a single ReLU neuron with an ε-approximation error, kernel
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input
x ∈ Rd

hidden layer
ϕi = σ⟨wi,x⟩

output
y ∈ R

1 [LHGYL, JMLR20; LHCS, TPAMI21; LLS, AISTATS21]
2 [LSHYS, JMLR21]
3 [LSC, NeurIPS22; LHCS, TPAMI22; LHCS, AISTATS21]
4 [LVC, NeurIPS22; ZLCC, NeurIPS22; WZLCC, NeurIPS22, ZLCLC, ICML23]
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Questions on high dimensional kernel methods

◦ double descent based on random matrix theory: (Mei and Montanari, 2022), (Hastie, Montanari, Rosset,
Tibshirani, 2022), (Liao, Couillet, Mahoney, 2022)

high dimensional kernel methods can only learn linear function! [3]

◦ asymptotic expansion under high dimensions [4] (El Karoui, 2010)
under the setting of n, d → ∞, n/d → ψ1 as d → ∞ with ψ1 ∈ (0,∞), we have

‖K − (aXX> + bI)‖2
P→ 0 when d → 0 for some parameters a, b

◦ ‖f‖H < ∞ ?
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Motivation

I high dimension vs. fixed dimension
I from asymptotic to non-asymptotic
I two-layer neural networks trained by SGD

◦ Analysis
I dimension-free bound
I multiple randomness sources

- data sampling, label noise, Gaussian initialization, stochastic gradients

observations 1), 2), 3) can be still proved!
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Our results: Double descent of RFMs trained by SGD1

On the Double Descent of Random Features Models Trained with SGD

excess risk EX,W ,ε〈η̄n,Σmη̄n〉

Bias EX,W 〈η̄biasn ,Σmη̄
bias
n 〉

B3: η̄bXWn
O(nζ−1)

B2: η̄bXn − η̄bXWn{
O(n2(ζ−1)m)

O( 1
m

)

B1: η̄biasn − η̄bXn
O(nζ−1)

Variance EX,W ,ε〈η̄varn ,Σmη̄
var
n 〉

V3: η̄vXWn{
O(nζ−1m)

O(nζ−1 + n
m

)

V2: η̄vXn − η̄vXWn{
O(nζ−1m)

O(1)

V1: η̄varn − η̄vXn{
O(nζ−1m) if m 6 n

O(1) if m > n

Figure 1. The roadmap of proofs.

4. Proof Outline and Discussion
In this section, we first introduce the structure of the proofs
with high level ideas, and then discuss our work with pre-
vious literature in terms of the used techniques and the
obtained results.

4.1. Proof outline

We (partly) disentangle the multiple randomness sources
on the dataX , the random features matrixW , the noise ε,
make full use of statistical properties of covariance operators
Σm and Σ̃m in Section 3.2, and provide the respective (bias
and variance) upper bounds in terms of multiple randomness
sources, as shown in Figure 1.

Bias: To bound Bias, we need some auxiliary notations.
Recall Σm = Ex[ϕ(x)⊗ ϕ(x)] and Σ̃m = Ex,W [ϕ(x)⊗
ϕ(x)], define

ηbXt = (I − γtΣm)ηbXt−1, ηbX0 = f∗ , (8)

ηbXWt = (I − γtΣ̃m)ηbXWt−1, ηbXW0 = f∗ , (9)

with the average η̄bXn := 1
n

∑n−1
t=0 η̄

bX
t and η̄bXWn :=

1
n

∑n−1
t=0 η̄

bXW
t . Accordingly, ηbXt can be regarded as a "de-

terministic" version of ηbiast : we omit the randomness
on X (data sampling, stochastic gradients) by replacing
[ϕ(x)ϕ(x)>] with its expectation Σm. Likewise, ηbXWt is a
deterministic version of ηvXt by replacing Σm with its expec-
tation Σ̃m (randomness on initialization).

By virtue of Minkowski inequality, the Bias can be
decomposed as Bias . B1 + B2 + B3, where
B1 := EX,W

[
〈η̄biasn − η̄bXn ,Σm(η̄biasn − η̄bXn )〉

]
and

B2 := EW

[
〈η̄bXn − η̄bXWn ,Σm(η̄bXn − η̄bXWn )〉

]
and B3 :=

〈η̄bXWn , Σ̃mη̄
bXW
n 〉. Here B3 is a deterministic quantity that

is closely connected to model (intrinsic) bias without any
randomness; while B1 and B2 evaluate the effect of random-
ness from X and W on the bias, respectively. The error
bounds (convergence rates) for them can be directly found
in Figure 1.

To bound B3, we directly focus on its formulation by virtue
of spectrum decomposition and integral estimation. To

bound B2, we have B2 = 1
n2EW

∥∥∥Σ
1
2
m
∑n−1
t=0 (ηbXt −ηbXWt )

∥∥∥2

,

where the key part ηbXt − ηbXWt can be estimated by Lemma 6.
To bound B1, it can be further decomposed as (here we
use inaccurate expression for description simplicity) B1 .∑
t ‖ηbXt − ηbXWt ‖22 +

∑
t EX‖Ht‖2 in Lemma 7, where

Ht−1 := [Σm−ϕ(xt)⊗ϕ(xt)]η
bX
t−1. The first term can be

upper bounded by
∑
t ‖ηbXt − ηbXWt ‖22 . Tr(Σm)nζ‖f∗‖2

in Lemma 8, and the second term admits
∑
t EX‖Ht‖2 .

Tr(Σm)‖f∗‖2 in Lemma 9.

Variance: To bound Variance, we need some auxiliary
notations.

ηvXt := (I − γtΣm)ηvXt−1 + γtεtϕ(xt), ηvX0 = 0 , (10)

ηvXWt := (I − γtΣ̃m)ηvXWt−1 + γtεtϕ(xt), ηvXW0 = 0 , (11)

with the averaged quantities η̄vXn := 1
n

∑n−1
t=0 η̄

vX
t , η̄vXWn :=

1
n

∑n−1
t=0 η̄

vXW
t . Accordingly, ηvXt can be regarded as a "semi-

stochastic" version of ηvart : we keep the randomness due to
the noise εt but omit the randomness onX (data sampling)
by replacing [ϕ(x)ϕ(x)>] with its expectation Σm. Like-
wise, ηvXWt can be regarded as a "semi-stochastic" version of
ηvXt by replacing Σm with its expectation Σ̃m (randomness
on initialization).

By virtue of Minkowski inequality, the Variance can
be decomposed as Variance . V1 + V2 + V3,
where V1 := EX,W ,ε

[
〈η̄varn − η̄vXn ,Σm(η̄varn − η̄vXn )〉

]
,

V2 := EX,W ,ε

[
〈η̄vXn − η̄vXWn ,Σm(η̄vXn − η̄vXWn )〉

]
, and V3 :=

EX,W ,ε〈η̄vXWn ,Σmη̄
vXW
n 〉. Though V1, V2, V3 still interact

the multiple randomness, V1 disentangles some random-
ness on data sampling, V2 discards some randomness on
initialization, and V3 focuses on the "minimal" interaction
between data sampling, label noise, and initialization. The
error bounds for them can be found in Figure 1.

To bound V3, we focus on the formulation of the covari-
ance operator CvXW

t := EX,ε[ηvXWt ⊗ ηvXWt ] in Lemma 10 and

I (partially) decouple multiple randomness sources
I converge to O(1) order (noise variance)
I monotonic decreasing bias + unimodal variance
I constant step-size SGD does not hurt the

convergence rate

(c) bias (d) variance (e) excess risk

1Fanghui Liu, Johan Suykens, Volkan Cevher. On the Double Descent of Random Features Models Trained with SGD. NeurIPS 2022.
Fanghui Liu, Xiaolin Huang, Yudong Chen, and Johan Suykens. Random Features for Kernel Approximation: A Survey on Algorithms, Theory,

and Beyond. TPAMI2021.
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From kernel methods (RKHS) to neural networks (?)

Neural tagent kernel (NTK)

Kernel Methods Neural Networks

reproducing kernel Hilbert space (RKHS)

k(x, x′) = 〈φ(x), φ(x′)〉H

W(0) W(t)

lazy training regime

Lecun, He

NTK

supt∈[0,+∞)

∥
Wl(t)−Wl(0)

∥
F∥

Wl(0)
∥

F
→ 0

Figure: Lazy training regime: under the NTK initialization [5, 6].
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From kernel methods (RKHS) to neural networks (?)

Neural tagent kernel (NTK)

Kernel Methods Neural Networks

reproducing kernel Hilbert space (RKHS)

Curse of dimensionality [7, 8, 9]

W(0)

mean field regime

Xavier
W(t)

supt∈[0,+∞)

∥
Wl(t)−Wl(0)

∥
F∥

Wl(0)
∥

F
→ 1

Figure: Mean field regime: under the Xavier initialization, abc-Parametrizations [10, 11].
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From RKHS to Barron space

◦ RKHS of RFMs:

k̂m(x, x′) =
1
m

m∑
i=1

φ(x,wi)φ(x′,wi) → kµ(x, x′) =
∫

W
φ(x,w)φ(x′,w)dµ(w)

Definition (Barron space [12] (E, Ma, Wu, 2021))

B = ∪µ∈P(W)Hkµ , ‖f‖B = inf
µ∈P(W)

‖f‖Hkµ

Remark: ◦ Two-layer neural networks: data-adaptive kernel
◦ equivalent to path norm ‖Θ‖P := 1

m

∑m

k=1 |ak|‖wk‖1
◦ parameter space vs. measure space

e.g., [7] (Bach, 2017), [13] (Bartolucci, Vito, Rosasco, Vigogna, 2022).

Over-parameterization in ML | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 15



From RKHS to Barron space

◦ RKHS of RFMs:

k̂m(x, x′) =
1
m

m∑
i=1

φ(x,wi)φ(x′,wi) → kµ(x, x′) =
∫

W
φ(x,w)φ(x′,w)dµ(w)

Definition (Barron space [12] (E, Ma, Wu, 2021))

B = ∪µ∈P(W)Hkµ , ‖f‖B = inf
µ∈P(W)

‖f‖Hkµ

Remark: ◦ Two-layer neural networks: data-adaptive kernel
◦ equivalent to path norm ‖Θ‖P := 1

m

∑m

k=1 |ak|‖wk‖1
◦ parameter space vs. measure space

e.g., [7] (Bach, 2017), [13] (Bartolucci, Vito, Rosasco, Vigogna, 2022).

Over-parameterization in ML | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 15



From RKHS to Barron space

◦ RKHS of RFMs:

k̂m(x, x′) =
1
m

m∑
i=1

φ(x,wi)φ(x′,wi) → kµ(x, x′) =
∫

W
φ(x,w)φ(x′,w)dµ(w)

Definition (Barron space [12] (E, Ma, Wu, 2021))

B = ∪µ∈P(W)Hkµ , ‖f‖B = inf
µ∈P(W)

‖f‖Hkµ

Remark: ◦ Two-layer neural networks: data-adaptive kernel

◦ equivalent to path norm ‖Θ‖P := 1
m

∑m

k=1 |ak|‖wk‖1
◦ parameter space vs. measure space

e.g., [7] (Bach, 2017), [13] (Bartolucci, Vito, Rosasco, Vigogna, 2022).

Over-parameterization in ML | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 15



From RKHS to Barron space

◦ RKHS of RFMs:

k̂m(x, x′) =
1
m

m∑
i=1

φ(x,wi)φ(x′,wi) → kµ(x, x′) =
∫

W
φ(x,w)φ(x′,w)dµ(w)

Definition (Barron space [12] (E, Ma, Wu, 2021))

B = ∪µ∈P(W)Hkµ , ‖f‖B = inf
µ∈P(W)

‖f‖Hkµ

Remark: ◦ Two-layer neural networks: data-adaptive kernel
◦ equivalent to path norm ‖Θ‖P := 1

m

∑m

k=1 |ak|‖wk‖1

◦ parameter space vs. measure space
e.g., [7] (Bach, 2017), [13] (Bartolucci, Vito, Rosasco, Vigogna, 2022).

Over-parameterization in ML | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 15



From RKHS to Barron space

◦ RKHS of RFMs:

k̂m(x, x′) =
1
m

m∑
i=1

φ(x,wi)φ(x′,wi) → kµ(x, x′) =
∫

W
φ(x,w)φ(x′,w)dµ(w)

Definition (Barron space [12] (E, Ma, Wu, 2021))

B = ∪µ∈P(W)Hkµ , ‖f‖B = inf
µ∈P(W)

‖f‖Hkµ

Remark: ◦ Two-layer neural networks: data-adaptive kernel
◦ equivalent to path norm ‖Θ‖P := 1

m

∑m

k=1 |ak|‖wk‖1
◦ parameter space vs. measure space

e.g., [7] (Bach, 2017), [13] (Bartolucci, Vito, Rosasco, Vigogna, 2022).

Over-parameterization in ML | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 15



Our results: Refined analyses in Barron spaces2

For the class of two-layer neural networks Fm

θ? = arg min
fθ∈Fm

1
n

n∑
i=1

(yi − fθ(xi))2 + λ‖θ‖P .

Theorem (Informal)
Under proper assumptions, for two-layer over-parameterized neural networks, learning in Barron spaces leads to∥∥fθ? − fρ

∥∥2
L2

ρX

. λ+
1
m

+ d2n
− d+2

2d+2 w.h.p.

Remark:
I [14] (Siegel, Xu, 2022) on metric entropy

2Fanghui Liu, Leello Dadi, Volkan Cevher. Learning with two-layer, norm-constrained, over-parameterized neural networks. JMLR (under the
second-round review)
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ε
− 2d
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d. log N2(G1, ε) .d ε

− 2d
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Optimization in Barron spaces is difficult: curse of dimensionality!

Approximation Optimization

What is the suitable function space of NNs, both statistically and computationally efficient?
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Applications: Over-parameterization helps/hurts robustness?3

Helps! [15] Hurts! [16, 17, 18]

I initialization (e.g., lazy training, non-lazy training)
I architecture (e.g., width, depth)

robustness

initialization

lazy training non-lazy training

architecture

Takeaway messages: the good (width), the bad (depth), the ugly (initialization)
I width helps robustness in the over-parameterized regime
I depth helps robustness in LeCun initialization but hurts robustness in He/NTK initialization

3Zhenyu Zhu, Fanghui Liu, Grigorios Chrysos, Volkan Cevher. Robustness in deep learning: The good (width), the bad (depth), and the ugly
(initialization). NeurIPS 2022.

Jiayuan Ye, Zhenyu Zhu, Fanghui Liu, Reza Shokri, Volkan Cevher. Initialization matters: Privacy-utility analysis of overparameterized neural
networks. NeurIPS 2023.

Over-parameterization in ML | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 13/ 15



Applications: Over-parameterization helps/hurts robustness?3

Helps! [15] Hurts! [16, 17, 18]

I initialization (e.g., lazy training, non-lazy training)
I architecture (e.g., width, depth)

robustness

initialization

lazy training non-lazy training

architecture

Takeaway messages: the good (width), the bad (depth), the ugly (initialization)
I width helps robustness in the over-parameterized regime
I depth helps robustness in LeCun initialization but hurts robustness in He/NTK initialization

3Zhenyu Zhu, Fanghui Liu, Grigorios Chrysos, Volkan Cevher. Robustness in deep learning: The good (width), the bad (depth), and the ugly
(initialization). NeurIPS 2022.

Jiayuan Ye, Zhenyu Zhu, Fanghui Liu, Reza Shokri, Volkan Cevher. Initialization matters: Privacy-utility analysis of overparameterized neural
networks. NeurIPS 2023.

Over-parameterization in ML | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 13/ 15



Applications: Over-parameterization helps/hurts robustness?3

Helps! [15] Hurts! [16, 17, 18]

I initialization (e.g., lazy training, non-lazy training)
I architecture (e.g., width, depth)

robustness

initialization

lazy training non-lazy training

architecture

Takeaway messages: the good (width), the bad (depth), the ugly (initialization)

I width helps robustness in the over-parameterized regime
I depth helps robustness in LeCun initialization but hurts robustness in He/NTK initialization

3Zhenyu Zhu, Fanghui Liu, Grigorios Chrysos, Volkan Cevher. Robustness in deep learning: The good (width), the bad (depth), and the ugly
(initialization). NeurIPS 2022.

Jiayuan Ye, Zhenyu Zhu, Fanghui Liu, Reza Shokri, Volkan Cevher. Initialization matters: Privacy-utility analysis of overparameterized neural
networks. NeurIPS 2023.

Over-parameterization in ML | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 13/ 15



Applications: Over-parameterization helps/hurts robustness?3

Helps! [15] Hurts! [16, 17, 18]

I initialization (e.g., lazy training, non-lazy training)
I architecture (e.g., width, depth)

robustness

initialization

lazy training non-lazy training

architecture

Takeaway messages: the good (width), the bad (depth), the ugly (initialization)
I width helps robustness in the over-parameterized regime

I depth helps robustness in LeCun initialization but hurts robustness in He/NTK initialization

3Zhenyu Zhu, Fanghui Liu, Grigorios Chrysos, Volkan Cevher. Robustness in deep learning: The good (width), the bad (depth), and the ugly
(initialization). NeurIPS 2022.

Jiayuan Ye, Zhenyu Zhu, Fanghui Liu, Reza Shokri, Volkan Cevher. Initialization matters: Privacy-utility analysis of overparameterized neural
networks. NeurIPS 2023.

Over-parameterization in ML | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 13/ 15



Applications: Over-parameterization helps/hurts robustness?3

Helps! [15] Hurts! [16, 17, 18]

I initialization (e.g., lazy training, non-lazy training)
I architecture (e.g., width, depth)

robustness

initialization

lazy training non-lazy training

architecture

Takeaway messages: the good (width), the bad (depth), the ugly (initialization)
I width helps robustness in the over-parameterized regime
I depth helps robustness in LeCun initialization but hurts robustness in He/NTK initialization
3Zhenyu Zhu, Fanghui Liu, Grigorios Chrysos, Volkan Cevher. Robustness in deep learning: The good (width), the bad (depth), and the ugly

(initialization). NeurIPS 2022.
Jiayuan Ye, Zhenyu Zhu, Fanghui Liu, Reza Shokri, Volkan Cevher. Initialization matters: Privacy-utility analysis of overparameterized neural

networks. NeurIPS 2023.

Over-parameterization in ML | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 13/ 15



Conclusion: the good, the bad, the ugly

- Kernel methods
- RKHS
- Approximation

- Neural networks
- Barron spaces
- Optimization

good bad ugly
kernel methods analysis performance curse of dimensionality
neural networks performance analysis over-parameterization
generalization benign overfitting catastrophic overfitting model complexity

robustness width depth initialization
privacy depth width initialization
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I IEEE ICASSP 2023 Tutorial - “Neural networks: the good, the bad, and the ugly”
I CVPR 2023 Tutorial - “Deep learning theory for computer vision”

Thanks for your attention!

Q & A
my homepage www.lfhsgre.org for more information!
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