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Over-parameterization: more parameters than training data
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Surprises in modern neural networks: double descent

Classical Regime: Modern Regime:
Bias-Variance Tradeoff Larger Model is Better
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(a) Training and test error on ResNet18 [1] (b) Double descent [2] (Belkin, Hsu, Ma, Mandal, 2019).
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Observations: beyond bias-variance trade-off
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(b) Double descent [2] (Belkin, Hsu, Ma, Mandal, 2019).

> 1) Monotonic decreasing in the overparameterized regime

> 2) Global minimum when #parameters is infinite

> 3) Peak at the interpolation thresholds
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Today's talk: Function spaces vs. Models (initialization matters)

kernel random neural
methods features networks
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4[LVC, NeurlPS22; ZLCC, NeurlPS22; WZLCC, NeurlPS22, ZLCLC, ICML23]
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Questions on high dimensional kernel methods

o double descent based on random matrix theory: (Mei and Montanari, 2022), (Hastie, Montanari, Rosset,
Tibshirani, 2022), (Liao, Couillet, Mahoney, 2022)
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o asymptotic expansion under high dimensions [4] (El Karoui, 2010)
under the setting of n,d — oo, n/d — 1 as d — oo with ¢; € (0,00), we have
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[ high dimensional kernel methods can only learn linear function! [3]

o asymptotic expansion under high dimensions [4] (El Karoui, 2010)
under the setting of n,d — oo, n/d — 1 as d — oo with ¢; € (0,00), we have

IK — (XX +bI)||2 50 whend— 0 for some parameters a, b

o [Ifllx <oo?
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Motivation

> high dimension vs. fixed dimension
> from asymptotic to non-asymptotic

> two-layer neural networks trained by SGD
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Motivation

> high dimension vs. fixed dimension

> from asymptotic to non-asymptotic

> two-layer neural networks trained by SGD
o Analysis

> dimension-free bound

> multiple randomness sources
- data sampling, label noise, Gaussian initialization, stochastic gradients
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Motivation

> high dimension vs. fixed dimension

> from asymptotic to non-asymptotic

> two-layer neural networks trained by SGD
o Analysis

> dimension-free bound

> multiple randomness sources
- data sampling, label noise, Gaussian initialization, stochastic gradients

observations 1), 2), 3) can be still proved!
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Our results: Double descent of RFMs trained by SGD'*

excess risk Ex . w e (n, Smiln) . .
‘ > (partially) decouple multiple randomness sources

> converge to O(1) order (noise variance)

Variance Ex,w e (7", Smifi) Bias Ex,w (7™, S ™)

monotonic decreasing bias 4+ unimodal variance

VL 7 = 7 V20 i — i va: i )| B > constant step-size SGD does not hurt the
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(c) bias (d) variance (e) excess risk

1Fanghui Liu, Johan Suykens, Volkan Cevher. On the Double Descent of Random Features Models Trained with SGD. NeurlPS 2022.

Fanghui Liu, Xiaolin Huang, Yudong Chen, and Johan Suykens. Random Features for Kernel Approximation: A Survey on Algorithms, Theory,
and Beyond. TPAMI2021.
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From kernel methods (RKHS) to neural networks (?)

Kernel Met s Neural -Networks

reproducing kernel TK)

k(x, x') = (¢(x), d(x)) 2
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From kernel methods (RKHS) to neural networks (?)

Kernel Met s Neural -Networks

reproducing kernel NTK)

k(x, x') = (¢(x), d(x)) 2

- lazy training regime -

(W (1) -W, (0) || p =
B R | E /IO | P

Figure: Lazy training regime: under the NTK initialization [5, 6].
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From kernel methods (RKHS) to neural networks (?)

Kernel Me S Neural-Networks

reproducing kernel TK)

Curse of dimensionality [7, 8, 9]
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From kernel methods (RKHS) to neural networks (?)

Kernel Met S Neural-Networks

reproducing kernel NTK)

Curse of dimensionality [7, 8, 9]
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----------- W(t)

Figure: Mean field regime: under the Xavier initialization, abc-Parametrizations [10, 11].
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From RKHS to Barron space

o RKHS of RFMs:

km(xﬂvl) = %Zd)(xawi)cb(xlvwi) - ku(x,x’) :/ d’(wi)(i’(x,aw)d#(w)
=1 w
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From RKHS to Barron space

o RKHS of RFMs:

i (6,X) = — 3 G w ) W) = () = / O )0(x' w)du(w)
=1 w

Definition (Barron space [12] (E, Ma, Wu, 2021))

B=UuepomHMr,, Iflls= Hei;lfw) £ 112,
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From RKHS to Barron space

o RKHS of RFMs:

km(xﬂvl) = %Zd)(xawi)cb(xlvwi) - ku(x,x’) :/ (b(wi)d)(x,vw)d.u'(w)
=1 w

Definition (Barron space [12] (E, Ma, Wu, 2021))

B=UuepomHMr,, Iflls= Hei;lfw) £ 112,

Remark: o Two-layer neural networks: data-adaptive kernel
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From RKHS to Barron space

o RKHS of RFMs:

km(xﬂvl) = %Zd)(xawi)cb(xlvwi) - ku(x,x’) :/ d’(wi)(i’(xlvw)d#(w)
=1 w

Definition (Barron space [12] (E, Ma, Wu, 2021))

B=UuepomHMr,, Iflls= Hei;lfw) £ 112,

Remark: o Two-layer neural networks: data-adaptive kernel
o equivalent to path norm ||@|p := % Zz;l lak|||well1
o parameter space vs. measure space
e.g., [7] (Bach, 2017), [13] (Bartolucci, Vito, Rosasco, Vigogna, 2022).
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Our results: Refined analyses in Barron spaces?®

For the class of two-layer neural networks F,

n

1
6* = argmin (i — fo(xi) + Aol -

fo€EFm °
=1

2Fanghui Liu, Leello Dadi, Volkan Cevher. Learning with two-layer, norm-constrained, over-parameterized neural networks. JMLR (under the
second-round review)

Over-parameterization in ML | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 11/ 15



Our results: Refined analyses in Barron spaces?®

For the class of two-layer neural networks F,

n

1
6* = argmin (i — fo(xi) + Aol -

fo€EFm °
=1

Theorem (Informal)

Under proper assumptions, for two-layer over-parameterized neural networks, learning in Barron spaces leads to

”f(l* - pri/%x <A+ % + (iQ'rf% w.h.p.

2Fanghui Liu, Leello Dadi, Volkan Cevher. Learning with two-layer, norm-constrained, over-parameterized neural networks. JMLR (under the
second-round review)
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Optimization in Barron spaces is difficult: curse of dimensionality!

Approximation Optimization
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Optimization in Barron spaces is difficult: curse of dimensionality!

Optimization

Approximation

What is the suitable function space of NNs, both statistically and computationally efficient?
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Applications: Over-parameterization helps/hurts robustness?’

\)

Helps! [15] Hurts! [16, 17, 18]

3Zhenyu Zhu, Fanghui Liu, Grigorios Chrysos, Volkan Cevher. Robustness in deep learning: The good (width), the bad (depth), and the ugly
(initialization). NeurlPS 2022.

Jiayuan Ye, Zhenyu Zhu, Fanghui Liu, Reza Shokri, Volkan Cevher. Initialization matters: Privacy-utility analysis of overparameterized neural
networks. NeurlPS 2023.
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Applications: Over-parameterization helps/hurts robustness?’

\) 33 B

Helps! [15] Hurts! [16, 17, 18]

> initialization (e.g., lazy training, non-lazy training)
> architecture (e.g., width, depth)

‘ robustness ‘

‘ initialization ‘ ‘ architecture ‘

Takeaway messages: the good (width), the bad (depth), the ugly (initialization)
> width helps robustness in the over-parameterized regime
> depth helps robustness in LeCun initialization but hurts robustness in He/NTK initialization

3Zhenyu Zhu, Fanghui Liu, Grigorios Chrysos, Volkan Cevher. Robustness in deep learning: The good (width), the bad (depth), and the ugly
(initialization). NeurlPS 2022.

Jiayuan Ye, Zhenyu Zhu, Fanghui Liu, Reza Shokri, Volkan Cevher. Initialization matters: Privacy-utility analysis of overparameterized neural
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Conclusion: the good, the bad, the ugly

- Kernel methods - Neural networks
- RKHS - Barron spaces
- Approximation - Optimization

good bad ugly
kernel methods analysis performance curse of dimensionality
neural networks performance analysis over-parameterization
generalization benign overfitting  catastrophic overfitting model complexity
robustness width depth initialization
privacy depth width initialization
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> |[EEE ICASSP 2023 Tutorial - “Neural networks: the good, the bad, and the ugly”
> CVPR 2023 Tutorial - “Deep learning theory for computer vision”

Thanks for your attention!

Q&A

my homepage www.1lfhsgre.org for more information!
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