Robustness in Deep Learning: The good, the bad, the ugly

Zhenyu Zhu, Fanghui Liu, Grigorios G. Chrysos, Volkan Cevher

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

Over-parameterization: more parameters than training data

Challenges in deep learning: robustness

Robust, Secure, Trustworthy Machine Learning

(a) Turtle classified as rifle [AEIK18].

(b) Stop sign classified as 45 mph sign [EEF $^+18$].

Challenges in deep learning: robustness

Robust, Secure, Trustworthy Machine Learning

(a) Turtle classified as rifle [AEIK18].

(b) Stop sign classified as 45 mph sign [EEF $^+18$].

Understanding robustness from function space theory!

Why function space theory is needed? (lazy training regime)

$$\mathcal{F}_{\mathrm{NN},m} = \left\{ f_m(\mathbf{x}; \mathbf{\Theta}) = \sum_{i=1}^m \frac{a_i}{2} \max\left(\langle \mathbf{w}_i, \mathbf{x} \rangle, 0 \right) : a_i \in \mathbb{R}, \mathbf{w}_i \in \mathbb{R}^d \right\}$$

 \circ Gaussian initialization: $w_i, a_i \sim \mathcal{N}(0, \mathtt{var})$

Why function space theory is needed? (lazy training regime)

$$\mathcal{F}_{\mathrm{NN},m} = \left\{ f_m(\mathbf{x}; \mathbf{\Theta}) = \sum_{i=1}^m a_i \max\left(\left\langle \mathbf{w}_i, \mathbf{x} \right\rangle, 0 \right) : a_i \in \mathbb{R}, \mathbf{w}_i \in \mathbb{R}^d \right\}$$

 \circ Gaussian initialization: $w_i, a_i \sim \mathcal{N}(0, \mathtt{var})$

Figure: Training dynamics of two-layer ReLU NNs under different initializations [JGH18, COB19, LXMZ21].

Why function space theory is needed? (lazy training regime)

$$\mathcal{F}_{\mathrm{NN},m} = \left\{ f_m(\boldsymbol{x}; \boldsymbol{\Theta}) = \sum_{i=1}^m a_i \max\left(\langle \boldsymbol{w}_i, \boldsymbol{x} \rangle, 0 \right) : a_i \in \mathbb{R}, \boldsymbol{w}_i \in \mathbb{R}^d \right\}$$

 \circ Gaussian initialization: $\pmb{w}_i, a_i \sim \mathcal{N}(0, \mathtt{var})$

lazy training ratio
$$\kappa := rac{\sum_{l=1}^{L} \left\| \pmb{W}_l(t) - \pmb{W}_l(0) \right\|_{\mathrm{F}}}{\sum_{l=1}^{L} \left\| \pmb{W}_l(0) \right\|_{\mathrm{F}}}$$

Why function space theory is needed? (non-lazy training regime)

$$\mathcal{F}_{\mathrm{NN},m} = \left\{ f_m(\mathbf{x}; \mathbf{\Theta}) = \sum_{i=1}^m a_i \max\left(\langle \mathbf{w}_i, \mathbf{x} \rangle, 0 \right) : \frac{1}{m} \sum_{i=1}^m |a_i| \|\mathbf{w}_i\|_1 < \infty \right\}$$
mean field regime
sup_{t \in [0, +\infty)} \frac{\|\mathbf{w}_l(t) - \mathbf{w}_l(0)\|_F}{\|\mathbf{w}_l(0)\|_F} \to 1
W(0)
W(0)
W(t)
Xavier

Figure: Training dynamics of two-layer ReLU NNs under different initializations [JGH18, COB19, LXMZ21].

Why function space theory is needed? (non-lazy training regime)

Figure: Training dynamics of two-layer ReLU NNs under different initializations [JGH18, COB19, LXMZ21].

Architecture of DNNs

Initialization	Formulation		
LeCun initialization	$\beta_1 = \sqrt{\frac{1}{d}}, \ \beta = \beta_L = \sqrt{\frac{1}{m}}$		
He initialization	$\beta_1 = \sqrt{\frac{2}{d}}, \ \beta = \beta_L = \sqrt{\frac{2}{m}}$		
NTK initialization	$\beta = \beta_1 = \sqrt{\frac{2}{m}}, \ \beta_L = 1$		

_

Helps! [BS21]

Hurts! [HJ22, WCC⁺21, HWE⁺21]

¹Zhenyu Zhu, **Fanghui Liu**, Grigorios Chrysos, Volkan Cevher, *Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization).* NeurIPS 2022.

Helps! [BS21]

Hurts! [HJ22, WCC⁺21, HWE⁺21]

- initialization (e.g., lazy training, non-lazy training)
- architecture (e.g., width, depth)

¹Zhenyu Zhu, **Fanghui Liu**, Grigorios Chrysos, Volkan Cevher, *Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization).* NeurIPS 2022.

Helps! [BS21]

Hurts! [HJ22, WCC⁺21, HWE⁺21]

- initialization (e.g., lazy training, non-lazy training)
- architecture (e.g., width, depth)

Definition (perturbation stability)

The perturbation stability of a ReLU DNN f(x; W) is

$$\mathscr{P}(f,\epsilon) = \mathbb{E}_{\mathbf{x},\hat{\mathbf{x}},\mathbf{W}} \left\| \nabla_{\mathbf{x}} f(\mathbf{x};\mathbf{W})^{\top} (\mathbf{x} - \hat{\mathbf{x}}) \right\|_{2}, \quad \hat{\mathbf{x}} \sim \mathsf{Unif}(\mathbb{B}(\epsilon,\mathbf{x})),$$

where ϵ is the perturbation radius.

¹Zhenyu Zhu, **Fanghui Liu**, Grigorios Chrysos, Volkan Cevher, *Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)*. NeurIPS 2022.

Helps! [BS21]

Hurts! [HJ22, WCC⁺21, HWE⁺21]

- initialization (e.g., lazy training, non-lazy training)
- architecture (e.g., width, depth)

Definition (perturbation stability)

The perturbation stability of a ReLU DNN f(x; W) is

$$\mathscr{P}(f,\epsilon) = \mathbb{E}_{\mathbf{x},\hat{\mathbf{x}},\mathbf{W}(\mathbf{0})} \left\| \nabla_{\mathbf{x}} f(\mathbf{x};\mathbf{W})^{\top} (\mathbf{x} - \hat{\mathbf{x}}) \right\|_{2}, \quad \hat{\mathbf{x}} \sim \mathsf{Unif}(\mathbb{B}(\epsilon,\mathbf{x})),$$

where ϵ is the perturbation radius.

¹Zhenyu Zhu, **Fanghui Liu**, Grigorios Chrysos, Volkan Cevher, *Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)*. NeurIPS 2022.

Helps! [BS21]

Hurts! [HJ22, WCC⁺21, HWE⁺21]

- initialization (e.g., lazy training, non-lazy training)
- architecture (e.g., width, depth)

Definition (perturbation stability)

The perturbation stability of a ReLU DNN f(x; W) is

$$\mathscr{P}(f,\epsilon) = \mathbb{E}_{\pmb{x},\hat{\pmb{x}}} \left\| \nabla_{\pmb{x}} f(\pmb{x};\pmb{W})^\top (\pmb{x}-\hat{\pmb{x}}) \right\|_2, \quad \hat{\pmb{x}} \sim \mathsf{Unif}(\mathbb{B}(\epsilon,\pmb{x}))\,,$$

where ϵ is the perturbation radius.

¹Zhenyu Zhu, **Fanghui Liu**, Grigorios Chrysos, Volkan Cevher, *Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)*. NeurIPS 2022.

Main results (Lazy-training regime)

Assumption Initialization		Our bound for $\mathscr{P}(f,\epsilon)/\epsilon$	Trend of width $m{m}^{[1]}$	Trend of depth L $^{[1]}$
	LeCun initialization	$\left(\sqrt{\frac{L^3 m}{d}}e^{-m/L^3} + \sqrt{\frac{1}{d}}\right)(\frac{\sqrt{2}}{2})^{L-2}$	\nearrow	\searrow
$\ x\ _{2} = 1$	He initialization	$\sqrt{\frac{L^3m}{d}}e^{-m/L^3} + \sqrt{\frac{1}{d}}$	\nearrow \searrow	7
	NTK initialization	$\sqrt{\frac{L^3 m}{d}} e^{-m/L^3} + 1$	\nearrow \searrow	7

Theorem: perturbation stability $\leq \operatorname{Func}(m, L, \beta)$

^[1] The larger perturbation stability means worse average robustness.

Takeaway messages: the good (width), the bad (depth), the ugly (initialization)

Main results (Lazy-training regime)

			<pre></pre>	
Assumption	Initialization	Our bound for $\mathscr{P}(f,\epsilon)/\epsilon$	Trend of width $m^{\ [1]}$	Trend of depth L $^{[1]}$
	LeCun initialization	$\left(\sqrt{\frac{L^3m}{d}}e^{-m/L^3} + \sqrt{\frac{1}{d}}\right)(\frac{\sqrt{2}}{2})^{L-2}$	\nearrow	\searrow
$\ x\ _{2} = 1$	He initialization	$\sqrt{\frac{L^3m}{d}}e^{-m/L^3} + \sqrt{\frac{1}{d}}$	\nearrow \searrow	7
	NTK initialization	$\sqrt{\frac{L^3m}{d}}e^{-m/L^3}+1$	\nearrow	7

Theorem: perturbation stability $\leq \operatorname{Func}(m, L, \beta)$

^[1] The larger perturbation stability means worse average robustness.

Takeaway messages: the good (width), the bad (depth), the ugly (initialization)

width helps robustness in the over-parameterized regime

Main results (Lazy-training regime)

			<pre></pre>	
Assumption	Initialization	Our bound for $\mathscr{P}(f,\epsilon)/\epsilon$	Trend of width $m^{\ [1]}$	Trend of depth L $^{[1]}$
	LeCun initialization	$\left(\sqrt{\frac{L^3m}{d}}e^{-m/L^3} + \sqrt{\frac{1}{d}}\right)(\frac{\sqrt{2}}{2})^{L-2}$	\nearrow	\searrow
$\ x\ _{2} = 1$	He initialization	$\sqrt{\frac{L^3m}{d}}e^{-m/L^3} + \sqrt{\frac{1}{d}}$	\nearrow \searrow	7
	NTK initialization	$\sqrt{\frac{L^3m}{d}}e^{-m/L^3}+1$	\nearrow	7

Theorem: perturbation stability $\leq \operatorname{Func}(m, L, \beta)$

^[1] The larger perturbation stability means worse average robustness.

Takeaway messages: the good (width), the bad (depth), the ugly (initialization)

- width helps robustness in the over-parameterized regime
- depth helps robustness in LeCun initialization but hurts robustness in He/NTK initialization

Experiments: robustness under lazy-training regime

Metrics	Ours (NTK initialization)	1	[WCC ⁺ 21]	[ł	HWE ⁺ 21]
$\mathscr{P}(f,\epsilon)/\epsilon$	$\sqrt{\frac{L^3 m}{d}} e^{-m/L^3} + 1$		$L^2 m^{1/3} \sqrt{\log m} + \sqrt{mL}$	2	$\frac{3L-5}{2}\sqrt{L}$

Main results (Non-lazy training regime)

sufficient condition for DNNs

for large enough m and $m \gg d,$ w.h.p, DNNs fall into non-lazy training regime if

$$\alpha \gg (m^{3/2} \sum_{i=1}^L \beta_i)^L \,.$$

e.g.,
$$L=2$$
, $\alpha=1$, $\beta_1=\beta_2=\beta\sim \frac{1}{m^c}$ with $c>1.5$

Main results (Non-lazy training regime)

sufficient condition for DNNs

for large enough m and $m \gg d,$ w.h.p, DNNs fall into non-lazy training regime if

$$\alpha \gg (m^{3/2} \sum_{i=1}^L \beta_i)^L \,.$$

e.g.,
$$L=2$$
, $\alpha=1$, $\beta_1=\beta_2=\beta\sim \frac{1}{m^c}$ with $c>1.5$

Theorem (non-lazy training regime for two-layer NNs)

Under this setting with $m \gg n^2$ and standard assumptions, then

$$\frac{\mathscr{P}(f_t,\epsilon)}{\epsilon} \le \widetilde{\mathcal{O}}\left(\frac{n}{m^{c+1.5}}\right), \ w.h.p$$

width helps robustness in the over-parameterized regime in both lazy/non-lazy training regime

Experiment: Non-lazy training regime

What is the role of over-parameterization in DNNs from the function space perspective?

What is the role of over-parameterization in DNNs from the function space perspective?

Take away messages:

- initialization, function spaces
- the good (width), the bad (depth), the ugly (initialization)

- ▶ ICASSP 2023 Tutorial "Neural networks: the good, the bad, and the ugly"
- ► CVPR 2023 Tutorial "Deep learning theory for computer vision"

- ▶ ICASSP 2023 Tutorial "Neural networks: the good, the bad, and the ugly"
- CVPR 2023 Tutorial "Deep learning theory for computer vision"

Thanks for your attention!

Q & A

my homepage www.lfhsgre.org for more information!

References |

- [0] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok, Synthesizing robust adversarial examples, International Conference on Machine Learning, PMLR, 2018, pp. 284–293.
 (Cited on pages 3 and 4.)
- Sébastien Bubeck and Mark Sellke, A universal law of robustness via isoperimetry, Advances in Neural Information Processing Systems, 2021, pp. 28811–28822.
 (Cited on pages 11, 12, 13, 14, and 15.)
- [0] Lenaic Chizat, Edouard Oyallon, and Francis Bach, On lazy training in differentiable programming, Advances in Neural Information Processing Systems, 2019, pp. 2933–2943.
 (Cited on pages 5, 6, 8, and 9.)
- [0] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song, *Robust physical-world attacks on deep learning visual classification*, IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1625–1634. (Cited on pages 3 and 4.)
- Hamed Hassani and Adel Javanmard, The curse of overparametrization in adversarial training: Precise analysis of robust generalization for random features regression, arXiv preprint arXiv:2201.05149 (2022). (Cited on pages 11, 12, 13, 14, and 15.)

References II

- Hanxun Huang, Yisen Wang, Sarah Erfani, Quanquan Gu, James Bailey, and Xingjun Ma, *Exploring architectural ingredients of adversarially robust deep neural networks*, Advances in Neural Information Processing Systems, 2021, pp. 5545–5559.
 (Cited on pages 11, 12, 13, 14, 15, and 19.)
- [0] Arthur Jacot, Franck Gabriel, and Clément Hongler, Neural tangent kernel: Convergence and generalization in neural networks, Advances in Neural Information Processing Systems, 2018, pp. 8571–8580.
 (Cited on pages 5, 6, 8, and 9.)
- [0] Tao Luo, Zhi-Qin John Xu, Zheng Ma, and Yaoyu Zhang, *Phase diagram for two-layer relu neural networks at infinite-width limit*, Journal of Machine Learning Research 22 (2021), no. 71, 1–47.
 (Cited on pages 5, 6, 8, and 9.)
- Boxi Wu, Jinghui Chen, Deng Cai, Xiaofei He, and Quanquan Gu, *Do wider neural networks really help adversarial robustness?*, Advances in Neural Information Processing Systems, 2021, pp. 7054–7067.
 (Cited on pages 11, 12, 13, 14, 15, and 19.)