
Neural Networks: The Good, The Bad, The Ugly

Fanghui Liu (EPFL), Johan A.K. Suykens (KU Leuven), Volkan Cevher (EPFL)

Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

Switzerland

ICASSP 2023, Rhodes Island, Greece



Acknowledgements
◦ LIONS group members (current & alumni): https://lions.epfl.ch

I Quoc Tran Dinh, Fabian Latorre, Ahmet Alacaoglu, Maria Vladarean, Chaehwan Song, Ali Kavis, Mehmet
Fatih Sahin, Thomas Sanchez, Thomas Pethick, Igor Krawczuk, Leello Dadi, Paul Rolland, Junhong Lin,
Marwa El Halabi, Baran Gozcu, Quang Van Nguyen, Yurii Malitskyi, Armin Eftekhari, Ilija Bogunovic,
Yen-Huan Li, Anastasios Kyrillidis, Ya-Ping Hsieh, Bang Cong Vu, Kamal Parameswaran, Jonathan Scarlett,
Luca Baldassarre, Bubacarr Bah, Grigorios Chrysos, Stratis Skoulakis, Fanghui Liu, Kimon Antonakopoulos,
Andrej Janchevski, Pedro Abranches, Luca Viano, Zhenyu Zhu, Yongtao Wu, Wanyun Xie, Alp Yurtsever.

I EE-556 (Mathematics of Data): Course material

◦ Many talented faculty collaborators

I Panayotis Mertikopoulos, Georgios Piliouras, Kfir Levy, Francis Bach, Joel Tropp, Madeleine Udell, Stephen
Becker, Suvrit Sra, Mark Schmidt, Larry Carin, Michael Kapralov, Martin Jaggi, David Carlson, Adrian
Weller, Adish Singla, Lorenzo Rosasco, Alessandro Rudi, Stefanie Jegelka, Panos Patrinos, Andreas Krause,
Niao He, Bernhard Schölkopf, Olivier Fercoq...

◦ Many talented collaborators

I Francesco Locatello, Chris Russell, Matthaeus Kleindessner, Puya Latafat, Andreas Loukas, Yu-Guan Hsieh

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 2/ 86

https://lions.epfl.ch
https://www.epfl.ch/labs/lions/teaching/ee-556-mathematics-of-data-from-theory-to-computation/


Let’s start with what is really on everybody’s mind: GPT-4

◦ On the shoulders of giants: Supervised learning + unsupervised learning + reinforcement learning.

◦ Previous GPTs: text ⇒ text.

◦ GPT-4: allows text + image ⇒ text.
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A deep learning optimization problem in supervised learning

Definition (Optimization formulation)
The “deep-learning” problem with a neural network hx(a) is given by

x? ∈ arg min
x∈X

{
f(x) :=

1
n

n∑
i=1

L(hx(ai), bi)

}
,

where X denotes the constraints and L is a loss function.

◦ A single hidden layer neural network with params x := [X1,X2, µ1, µ2]

hx(a) :=

[
X2

] activationy
σ


weight
↓[

X1

] input
↓[
a

]
+

bias
↓[
µ1

]
︸                                                      ︷︷                                                      ︸

hidden layer = learned features

+

bias
↓[
µ2

]
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A deep learning optimization problem in supervised learning

Definition (Optimization formulation)
The “deep-learning” problem with a neural network hx(a) is given by

x? ∈ arg min
x∈X

{
f(x) :=

1
n

n∑
i=1

L(hx(ai), bi)

}
,

where X denotes the constraints and L is a loss function.

Some frequently used architectures
I Transformers with self-attention
I Recurrent neural networks
I Convolutional neural networks
I Multi layer perceptron. . .
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Robustness issues in deep learning: Invisibility [81]
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Robustness issues in deep learning: Acceleration1

1https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/
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Robustness issues in deep learning: Injections2

2https://www.robustintelligence.com/blog-posts/prompt-injection-attack-on-gpt-4
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Today: “Basic” robust machine learning

min
x∈X

max
y∈Y

Φ(x,y)

◦ A seemingly simple optimization formulation

◦ Critical in machine learning with many applications

I Adversarial examples and training
I Generative adversarial networks
I Robust reinforcement learning
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Warm up: Flexibility of the template

Φ? = min
x∈X

max
y∈Y

Φ(x,y) (argmin, argmax→ x?,y?)

f? = min
x:x∈X

f(x) (argmin→ x?)

◦ (eula) In the sequel,

I the set X is convex

I all convergence characterizations are with feasible iterates xk ∈ X

I L-smooth means ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ X

I ∇ may refer to the generalized subdifferential
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Towards adversarial training for robustness

Adversarial Training
Let hx : Rn → R be a model with parameters x and let {(ai,bi)}ni=1, with the data ai ∈ Rp and the labels bi.
The problem of adversarial training is the following adversarial optimization problem

min
x
E(a,b)∼P

[
max
δ:‖δ‖≤ε

L(hx (ai + δ),bi)
]
≈ min

x

1
n

n∑
i=1

[
max
δ:‖δ‖≤ε

L(hx (ai + δ),bi)
]
.

This problem can be formulated within the template minx∈X maxy∈Y Φ(x,y).
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Solving the outer problem: Solution concepts

◦ Consider the finite sum (e.g., ERM) setting

f? := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}
.

◦ Goal: Find x? such that ∇f(x?) = 0.(a) (b)

(c) (d)

Figure 5: Illustrations of three different types of saddle points (a-c) plus a gutter structure (d). Note
that for the gutter structure, any point from the circle x2 + y2 = 1 is a minimum. The shape of the
function is that of the bottom of a bottle of wine. This means that the minimum is a “ring” instead of
a single point. The Hessian is singular at any of these points. (c) shows a Monkey saddle where you
have both a min-max structure as in (b) but also a 0 eigenvalue, which results, along some direction,
in a shape similar to (a).

12

Figure: λi , 0 for all i

(a) (b)

(c) (d)

Figure 5: Illustrations of three different types of saddle points (a-c) plus a gutter structure (d). Note
that for the gutter structure, any point from the circle x2 + y2 = 1 is a minimum. The shape of the
function is that of the bottom of a bottle of wine. This means that the minimum is a “ring” instead of
a single point. The Hessian is singular at any of these points. (c) shows a Monkey saddle where you
have both a min-max structure as in (b) but also a 0 eigenvalue, which results, along some direction,
in a shape similar to (a).

12

Figure: λi = 0 for some i

Recall (Classification of critical points)
Let f : Rp → R be twice differentiable and let x̄ be a critical point, i.e., ∇f(x̄) = 0. Let {λi}di=1 be the
eigenvalues of the hessian ∇2f(x̄), then
I λi > 0 for all i ⇒ x̄ is a local minimum
I λi < 0 for all i ⇒ x̄ is a local maximum
I λi > 0, λj < 0 for some i, j and λi , 0 for all i ⇒ x̄ is a saddle point
I Other cases ⇒ inconclusive
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Solving the outer problem

Adversarial Training
Let hx : Rn → R be a model with parameters x and let {(ai,bi)}ni=1, with ai ∈ R

p and bi be the
corresponding labels. The adversarial training optimization problem is given by

min
x

 1
n

n∑
i=1

fi(x) :=
1
n

n∑
i=1

[
max
δ:‖δ‖≤ε

L(hx (ai + δ),bi)
]

︸                                      ︷︷                                      ︸
=:fi(x)

 .

Note that L is not continuously differentiable due to ReLU, max-pooling, etc.
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Solving the outer problem: Gradient computation

Adversarial Training
Let hx : Rp → R be a model with parameters x and let {(ai,bi)}ni=1, with ai ∈ R

p and bi be the
corresponding labels. The adversarial training optimization problem is given by

min
x

 1
n

n∑
i=1

fi(x) :=
1
n

n∑
i=1

[
max
δ:‖δ‖≤ε

L(hx (ai + δ),bi)
]

︸                                      ︷︷                                      ︸
=:fi(x)

 .

Note that L is not continuously differentiable due to ReLU, max-pooling, etc.

Question
How can we compute the following stochastic gradient (i.e., Ei∇xfi(x) = ∇xfi(x) for i ∼ Uniform{1, . . . , n}):

∇xfi(x) := ∇x

(
max
δ:‖δ‖≤ε

L(hx (ai + δ),bi)
)

?

◦ Challenge: It involves differentiating with respect to a maximization.
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Basic questions on solution concepts
◦ Consider the finite sum setting

f? := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}
.

◦ Goal: Find x? such that ∇f(x?) = 0.

1. Does SGD converge with probability 1?
[10, 75, 55, 62]

2. Does SGD avoid non-minimum points
with probability 1? [51, 29, 62]

3. How fast does SGD converge to local
minimizers? [29, 30, 62]

4. Can SGD converge to global
minimizers?
[41, 43, 32, 84, 35, 70, 53, 22, 90, 46, 76]

Vanilla (Minibatch) SGD
Input: Stochastic gradient oracle g, initial point x0, step size αk
1. For k = 0, 1, . . .:

obtain the (minibatch) stochastic gradient gk
update xk+1 ← xk − γkgk

Perturbed Stochastic Gradient Descent [28]
Input: Stochastic gradient oracle g, initial point x0, step size αk
1. For k = 0, 1, . . .:

sample noise ξ uniformly from unit sphere
update xk+1 ← xk − αk(gk + ξ)

?Stochastic Gradient Langevin Dynamics [79]
Input: Stochastic gradient oracle g, initial point x0, step size αk
1. For k = 0, 1, . . .

sample noise ξ standard Gaussian
update xk+1 ← xl − αkgk +

√
2αkξ
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Q1: Does SGD converge?

◦ SGD converges to the critical points of f as k →∞.

1. GD converges from any intialization with constant step-size and full gradients

2. With probability 1, (P)SGD does not converge with constant step-size α [10, 75]

3. With probability 1, SGD converges with vanishing step-size if xk is bounded with probability 1 [55, 10]

Boundedness is not required (Theorem 1 of [62])
Assume Lipschitzness, sublevel regularity, E‖g‖q ≤ σq and

∑
k
α

1+q/2
k

<∞ (q ≥ 2). Then, xk converges with
probability 1.
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Q2: Does SGD avoid saddle points?

◦ SGD avoids strict saddles (λmin(∇2f(x̄)) < 0)

1. GD avoids strict saddles from almost all initializations [51]

2. With probability 1− ζ, PSGD with constant α escapes strict saddles after Ω
(
log(1/ζ)/α2

)
iterations [29]

I However, SGD does not converge with constant α

I We cannot take ζ = 0

SGD avoids traps almost surely (Theorem 3 of [62])
Assume bounded uniformly exciting noise and αk = O

(
1
kκ

)
for κ ∈ (0, 1]. Then, SGD avoids strict saddles

from any initial condition with probability 1.
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Q3: How fast does SGD converge to local minimizers?

◦ SGD remains close to Hurwicz minimizers (i.e., x∗ : λmin(∇2f(x∗)) > 0 )

1. SGD with constant α can obtain objective value ε-close to a Hurwicz minimizer in O(1/ε2)-iterations
[29, 30]

I However, SGD does not converge with constant α

I Need averaging which is problematic in non-convex optimization

Using a vanishing step-size helps! (Theorem 4 of [62])
Using αk = O

(
1
k

)
, SGD enjoys a O

(
1
k

)
convergence rate in objective value.
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Using 1/k step-size decrease helps in practice

◦ ResNet training at different cool-down cut-offs
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Basic results on adaptive algorithms

GD/SGD Accelerated GD/SGD AdaGrad AcceleGrad/UniXgrad Adam/AMSGrad

Convex, stochastic O
(

1√
k

)
3 O

(
1√
k

)
3 O

(
1√
k

)
4 O

(
1√
k

)
5,6 O

(
1√
k

)
7

Convex, deterministic, L-smooth O
(

1
k

)
3 O

(
1
k2

)
3 O

(
1
k

)
5 O

(
1
k2

)
5,6 O

(
1
k

)
8

Nonconvex, stochastic, L-smooth O
(

1√
k

)
3 O

(
1√
k

)
3 O

(
1√
k

)
9 ? O

(
1√
k

)
10

Nonconvex, deterministic, L-smooth O
(

1
k

)
3 O

(
1
k

)
3 O

(
1
k

)
9 ? O

(
1
k

)
8

3 Lan, First-order and Stochastic Optimization Methods for Machine Learning. Springer Nature, 2020.
4 Duchi, Hazan, Singer, Adaptive subgradient methods for online learning and stochastic optimization, JMLR, 2011.
5 Levy, Yurtsever, Cevher, Online adaptive methods, universality and acceleration, NeurIPS 2018.
6 Kavis, Levy, Bach, Cevher, UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization, NeurIPS, 2019.
7 Reddi, Kale, Kumar, On the convergence of adam and beyond, ICLR, 2018.
Alacaoglu, Malitsky, Mertikopoulos, Cevher, A new regret analysis for Adam-type algorithms, ICML 2020.
8 Barakat, Bianchi, Convergence Rates of a Momentum Algorithm with Bounded Adaptive Step Size for Nonconvex Optimization, ACML, 2020.
9 Ward, Xu, Bottou, AdaGrad stepsizes: Sharp convergence over nonconvex landscapes, ICML 2019.
10 Alacaoglu, Malitsky, Cevher, Convergence of adaptive algorithms for weakly convex constrained optimization, NeurIPS, 2021.
Chen, Zhou, Tang, Yang, Cao, Gu, Closing the generalization gap of adaptive gradient methods in training deep neural networks, IJCAI 2020.
Chen, Liu, Sun, Hong, On the convergence of a class of adam-type algorithms for non-convex optimization, ICLR 2018.
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Danskin’s Theorem (1966): How do we compute the gradient?

Theorem ([18])
Let S be compact set, Φ : Rp ×S be continuous such that Φ(·,y) is differentiable for all y ∈ S, and ∇xΦ(x,y)
be continuous on Rp × S. Define

f(x) B max
y∈S

Φ(x,y), S?(x) B arg max
y∈S

Φ(x,y).

Let γ ∈ Rp, and ‖γ‖2 = 1. The directional derivative Dγf(x̄) of f in the direction γ at x̄ is given by

Dγf(x̄) = max
y∈S?(x̄)

〈γ,∇xΦ(x̄,y)〉.

An immediate consequence
If δ? ∈ arg maxδ:‖δ‖≤ε L(hx (ai + δ),bi) is unique, then we have

∇xfi(x) = ∇xL(hx (ai + δ?),bi) .
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Optimized perturbations are typically not unique!
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Figure: (left) Pairwise `2-distances between “optimized” perturbations with different initializations are bounded away from zero.
(right) The losses of multiple perturbations on the same sample concentrate around a value much larger than the clean loss.
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Theoretical foundations

?

unique δ? non-unique δ?
∇xΦ(x, δ?) ∇xf(x) descent direction [58]

level sets

xk
rf(xk)

pk
xk + D(f, xk)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 22/ 86



Theoretical foundations ?

unique δ? non-unique δ?
∇xΦ(x, δ?) ∇xf(x) descent direction [58]

level sets

xk
rf(xk)

pk
xk + D(f, xk)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 22/ 86



A counterexample

f(x) B max
δ∈[−1,1]

xδ = |x| .

◦ We have S B [−1, 1] and Φ(x, δ) = xδ.

◦ At x = 0, we have S?(0) = [−1, 1].

◦ We can choose δ = 1 ∈ S?(0): Φ(x, 1) = x.

I −∇xΦ(0, 1) = −1 , 0.

I Is −1 a descent direction at x = 0?
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Our understanding [Latorre, Krawczuk, Dadi, Pethick, Cevher, ICLR (2023)]

◦ The corollary in [58] is false (it is subtle!).

◦ We constructed a counter example & proposed an alternative way (DDi) of computing “the gradient”:

unique δ? non-unique δ?
∇xΦ(x, δ?) ∇xf(x) could be ascent direction!
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Figure: Left and middle pane: comparison DDi and PGD ([58]) on a synthetic problem. Right pane: DDi vs PGD on CIFAR10.
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Comparison with the state-of-the-art
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Figure: (left) PGD vs DDi on CIFAR10, in a setting covered by theory. (right) An ablation testing the effect of adding back the
elements not covered by theory (BN,ReLU,momentum).

DDi + Graduate Student Descent may improve things?
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Learning without concentration

◦ We can minimize W1 (µ̂n, hx#pΩ) with respect to x.

◦ Figure: Empirical distribution (blue), µ̂n =
∑n

i=1 δi

A plug-in empirical estimator
Using the triangle inequality for Wasserstein distances we can upper bound in the follow way,

W1(µ\, hx#pΩ) ≤W1(µ\, µ̂n) +W1(µ̂n, hx#pΩ), (1)

where µ̂n is the empirical estimator of µ\ obtained from n independent samples from µ\.

Theorem (Slow convergence of empirical measures in 1-Wasserstein [78, 23])
Let µ\ be a measure defined on Rp and let µ̂n be its empirical measure. Then the µ̂n converges, in the worst
case, at the following rate,

W1(µ\, µ̂n) & n−1/p. (2)

Remarks: ◦ Using an empirical estimator in high-dimensions is terrible in the worst case.
◦ However, it does not directly say that W1

(
µ\, hx#pΩ

)
will be large.

◦ So we can still proceed and hope our parameterization interpolates harmlessly.
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Duality of 1-Wasserstein
◦ How do we get a sub-gradient of W1 (µ̂n, hx#pΩ) with respect to x?

Theorem (Kantorovich-Rubinstein duality)

W1(µ, ν) = sup
d
{〈d, µ〉 − 〈d, ν〉 : d is 1-Lipschitz} (3)

Remark: ◦ d is the “dual” variable. In the literature, it is commonly referred to as the “discriminator.”

Inner product is an expectation

〈d, µ〉 =
∫

ddµ =
∫

d(a)dµ(a) = Ea∼µ [d(a)] . (4)

Kantorovich-Rubinstein duality applied to our objective

W1 (µ̂n, hx#ω) = sup
{
Ea∼µ̂n [d(a)]−Ea∼hx#ω [d(a)] : d is 1-Lipschitz

}
(5)
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Another minimax example: Generative adversarial networks (GANs)
◦ Ingredients:
I fixed noise distribution pΩ (e.g., normal)
I target distribution µ̂n (natural images)
I X parameter class inducing a class of functions (generators)
I Y parameter class inducing a class of functions (dual variables)

Wasserstein GANs formulation [2]
Define a parameterized function dy(a), where y ∈ Y such that dy(a) is 1-Lipschitz. In this case, the
Wasserstein GAN training problem is given by

min
x∈X

(
max
y∈Y

Ea∼µ̂n [dy(a)]−Eω∼pΩ [dy(hx(ω))]
)
. (6)

This problem is already captured by the template minx∈X maxy∈Y Φ(x,y). Note that the original problem is a
direct non-smooth minimization problem and the Rubinstein-Kantarovic duality results in the minimax template.

Remarks: ◦ Cannot solve in a manner similar to adversarial training a la Danskin. Need a direct approach.
◦ Scalability, mode collapse, catastrophic forgetting. Heuristics galore!
◦ Enforce Lipschitz constraint weight clipping, gradient penalty, spectral normalization [2, 34, 63].
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Abstract minmax formulation

Minimax formulation

min
x∈X

max
y∈Y

Φ(x,y), (7)

where
I Φ is differentiable and nonconvex in x and nonconcave in y,
I The domain is unconstrained, specifically X = Rm and Y = Rn.

◦ Key questions:

1. Where do the algorithms converge?

2. When do the algorithm converge?
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Solving the minimax problem: Solution concepts

◦ Consider the unconstrained setting:

Φ? = min
x

max
y

Φ(x,y)

◦ Goal: Find an LNE point (x?,y?).
Figure: The monkey saddle
Φ(x, y) = x3 − 3xy2.

Figure: The weird saddle
Φ(x, y) = −x2y2 + xy.

Definition (Local Nash Equilibrium)
A pure strategy (x?,y?) is called a local Nash equilibrium if

Φ (x?,y) ≤ Φ (x?,y?) ≤ Φ (x,y?) (LNE)

for all x and y within some neighborhood of x? and y?, i.e.,
‖x− x?‖ ≤ ε and ‖y− y?‖ ≤ ε for some ε > 0.

Necessary conditions
Through a Taylor expansion around x? and
y? one can show that a LNE implies

∇xΦ(x,y),−∇yΦ(x,y) = 0;
∇xxΦ(x,y),−∇yyΦ(x,y) � 0.
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Abstract minmax formulation
Minimax formulation

min
x∈X

max
y∈Y

Φ(x,y), (8)

where
I Φ is differentiable and nonconvex in x and nonconcave in y,
I The domain is unconstrained, specifically X = Rm and Y = Rn.

◦ Key questions:

1. Where do the algorithms converge?

2. When do the algorithm converge?

A buffet of negative results [19]
“Even when the objective is a Lipschitz and smooth differentiable function, deciding whether a min-max point
exists, in fact even deciding whether an approximate min-max point exists, is NP-hard. More importantly, an
approximate local min-max point of large enough approximation is guaranteed to exist, but finding one such
point is PPAD-complete. The same is true of computing an approximate fixed point of the (Projected) Gradient
Descent/Ascent update dynamics.”
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Basic algorithms for minimax
◦ Given minx∈X maxy∈Y Φ(x,y), define V (z) = [∇xΦ(x,y),−∇yΦ(x,y)] with z = [x,y].

2 1 0 1 2
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

GDA
OGDA
EG
PP
Critical point

Figure: Trajectory of different algorithms for a simple bilinear game minx maxy xy.

◦ (In)Famous algorithms
I Gradient Descent Ascent (GDA)
I Proximal point method (PPM) [74, 33]
I Extra-gradient (EG) [48]
I Optimistic GDA (OGDA) [88, 59]
I Reflected-Forward-Backward-Splitting (RFBS) [14]

◦ EG and OGDA are approximations of the PPM
I zk+1 = zk − αV (zk).
I zk+1 = zk − αV (zk+1).
I zk+1 = zk − αV (zk − αV (zk−1)).
I zk+1 = zk − α[2V (zk)− V (zk−1)].
I zk+1 = zk − αV (2zk − zk−1).
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Where do the algorithms converge?

◦ Recall: Given minx∈X maxy∈Y Φ(x,y), define V (z) = [∇xΦ(x,y),−∇yΦ(x,y)] with z = [x,y].

◦ Given V (z), define stochastic estimates of V (z, ζ) = V (z) + U(z, ζ), where

I U(z, ζ) is a bias term,

I We often have unbiasedness: EU(z, ζ) = 0,

I The bias term can have bounded moments,

I We often have bounded variance: P (‖U(z, ζ) ‖ ≥ t) ≤ 2 exp− t2

2σ2 for σ > 0.

◦ An abstract template for generalized Robbins-Monro schemes, dubbed as A:

zk+1 = zk − αkV (zk, ζk).

The dessert section in the buffet of negative results: [39]
1. Bounded trajectories of A always converge to an internally chain-transitive (ICT) set.
2. Trajectories of A may converge with arbitrarily high probability to spurious attractors that contain no

critical point of Φ.
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Minimax is more difficult than just optimization [39]
◦ Internally chain-transitive (ICT) sets characterize the convergence of dynamical systems [11].

I For optimization, {attracting ICT} ≡ {solutions}

I For minimax, {attracting ICT} ≡ {solutions} ∪ {spurious sets}

◦ “Almost” bilinear , bilinear:

Φ(x, y) = xy + εφ(x), φ(x) =
1
2
x2 −

1
4
x4
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◦ The “forsaken” solutions:

Φ(y, x) = y(x−0.5)+φ(y)−φ(x), φ(u) =
1
4
u2−

1
2
u4+

1
6
u6
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When do the algorithms converge?

Assumption (weak Minty variational inequality)
For some ρ ∈ R, weak MVI implies

〈V (z), z− z?〉 > ρ‖V (z)‖2, for all z ∈ Rn. (9)

◦ A variant EG+ converges when ρ > − 1
8L

I Diakonikolas, Daskalakis, Jordan, AISTATS 2021.
◦ It still cannot handle the examples of [39].

z⋆z

−V(z)

Figure: The operator V (z) is allowed to point away from
the solution by some amount when ρ is negative.

◦ Complete picture under weak MVI (ICLR’22 and ’23)
I Pethick, Lalafat, Patrinos, Fercoq, and Cevher.
I constrained and regularized settings with ρ > − 1

2L
I matching lower bounds
I stochastic variants handling the examples of [39]
I adaptive variants handling the examples of [39]
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Solving stochastic weak MVIs without increasing batch size

z̄k = zk − γV (zk) (EG+)

zk+1 = zk − αγV (z̄k)

z̄k = zk − βkγV (zk, ζk) (SEG)

zk+1 = zk − αkγV (z̄k, ζ̄k)

z̄k = zk − γV (zk, ζk) (SEG+)

zk+1 = zk − αkγV (z̄k, ζ̄k)

H(z, ζ) def= z− γV (z, ζ)

z̄k = H(zk, ζk) + (1− αk)
(

z̄k−1 −H(zk−1, ζk)
)

zk+1 = zk − αkγV (z̄k, ζ̄k)

◦ Extragradient+
I the smaller α ∈ (0, 1), the better [20]
I ρ > − 1

2L [72]

◦ Stochastic extragradient
I βk > αk: two time scale
I βk ∝ 1/k and αk ∝ 1/k for ρ = 0 [40]

◦ Stochastic extragradient+
I converges for affine V , ρ > (1− αk)γ/2 [71]
I may not converge for monotone setting

◦ Bias corrected stochastic extragradient+ [71]
I a.s. convergence with ρ > − 1

2L w/αk → 0
I alternation allows even bigger step-sizes

I constrained and regularized settings w/ prox
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GANs with SEG+

Figure: A performance comparison of GAN training by Adam, EG with stochastic gradients, and SEG+.
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An alternative proposal: From pure to mixed Nash equilibrium (NE)

◦ Rethinking minimax problem as pure strategy game formulation

min
x∈X

max
y∈Y

Φ(x,y)

◦ A corresponding mixed strategy formulation

min
p∈M(X )

max
q∈M(Y)

Ex∼pEy∼q [Φ(x,y)]

I M(Z) B {all randomized strategies on Z}
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GAN training as infinite dimensional matrix games
◦ A different way of looking at GAN objective

I 〈p〉h B
∫
h dp for a measure p and function h (Riesz representation)

I the linear operator G and its adjoint G†:

(Gq)(x) B Ey∼q [Φ(x,y)]

(G†p)(y) B Ex∼p [Φ(x,y)] ,

◦ Mixed NE formulation ' finite two-player games

min
p∈M(X )

max
q∈M(Y)

Ex∼pEy∼q [Φ(x,y)]

m
min

p∈M(X )
max

q∈M(Y)
〈p〉Gq

I If X and Y are finite ⇒ mirror descent
I There is a way to solve this infinite dimensional problem: Mirror descent + Langevin dynamics [38]
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Escaping traps with the mixed-NE concept1

max
ω∈[−2,2]

min
θ∈[−2,2]

−ω2θ2 + ωθ
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t
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= 0.5
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Start

1K. Parameswaran, Y-T. Huang, Y-P. Hsieh, P. Rolland, C. Shi, V. Cevher, “Robust Reinforcement Learning via Adversarial Training with Langevin Dynamics" NeurIPS 2020.
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Take home messages

◦ Even the simplified view of robust & adversarial ML is challenging

◦ min-max-type has spurious attractors with no equivalent concept in min-type

◦ Not all step-size schedules are considered in our work: Possible to “converge” under some settings

◦ Other successful attempts1 consider “mixed Nash” concepts2

◦ Promising new direction: Higher-order adaptive methods3

1Y-P. Hsieh, C. Liu, and V. Cevher, “Finding mixed Nash equilibria of generative adversarial networks,” International Conference on Machine Learning, 2019.
2K. Parameswaran, Y-T. Huang, Y-P. Hsieh, P. Rolland, C. Shi, V. Cevher, “Robust Reinforcement Learning via Adversarial Training with Langevin Dynamics,” NeurIPS, 2020.
3K. Antonakopoulos, A. Kavis, and V. Cevher, “A First Approach to Universal Second-Order Acceleration for Convex Minimization,” NeurIPS, 2022.
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The mystery in deep learning

A gap between theory and practice
◦ In practice, simple algorithms like SGD can
train neural networks to zero error and
achieve low test error.
◦ This happens even for large and complex
neural network architectures.
◦ Complexity measures like the Rademacher
complexity suggest the opposite behaviour
(overfitting)
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Q4: Can SGD converge to global minimizers?

◦ A few phenomena about neural networks [85]:
I Deep neural networks can fit random labels
I First-order methods can find global minimizers

Figure: DNN Training curves on CIFAR10, from [85]

◦ Overparametrization can explain these mysteries!

Overparametrization
Number of parameters � number of training data.
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GD finds global minimizers of overparametrized networks

hx(a) :=

[
X2

] activationy
σ


weight
↓[

X1

] input
↓[
a

]
+

bias
↓[
µ1

]
︸                                                      ︷︷                                                      ︸

hidden layer = learned features

+

bias
↓[
µ2

]

Theorem (Linear convergence of Gradient Descent [22])
I f(a; X1,X2): 1-hidden-layer network with width m,hidden layer weights X1, output layer weights X2 and

ReLU activation.
I m = Ω(n

6

δ3
) where n =number of samples.

I X0
1 is initialized with a normal distribution, X0

2 ∼ Unif[−1, 1]m.
I Stepsize η = O(n−2).

With probability at least 1− δ, for the empirical risk Rn will converge to zero with a geometric rate of (1− η).
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Overparametrization is an active area of research

Reference Number of parameters Depth d Result

[41] Ω̃(n) 1, 2 Existence of zero error

[84, 70] Ω̃(n) Any d Existence of zero error

[53] Ω̃(poly(n)) 1 (S)GD global convergence

[22] Ω̃(n6) 1 (S)GD global convergence

[1, 89] Ω̃(poly(n, d)) Any d (S)GD global convergence

[21] Ω̃(n82O(d)) Any d (S)GD global convergence

[90] Ω̃(n8d12) Any d (S)GD global convergence

[46] Ω̃(n) (Training last layer) Any d (S)GD global convergence

[77] Ω̃(n
3
2 ) (Training all layers) 1 (S)GD global convergence

Table: Summary of results on overparametrization. Minimum number of parameters required as a function of data size n and
depth d. The result is classified either as Existence i.e., there exists a neural network achieving zero error on the data, or (S)GD
global convergence i.e., (S)GD converges to zero training error, a much stronger condition.
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It is time for the short break!
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The role of over-parameterization in machine learning

Deep learning theory
Motivation: initialization

Over-
parameterization The role of over-parameterization

Good,
bad, ugly Robustness and generalization
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Over-parameterization: more parameters than training data

MLP:
<< 1 million
parameters

ResNet-152:
60.3 million
parameters

Transformer:
340 million
parameters

GPT-2:
1.5 billion

parameters

GPT-3, Chat-GPT:
175 billion
parameters

before 2012 2017 2019 202020152012

AlexNet

2022

GPT-4
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Over-parameterization: more parameters than training data

Figure: Larger models make increasingly efficient use of in-context information: source from Open AI.
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Recall DNNs: the good in fitting ...

Figure: DNN Training curves on CIFAR10, from [85]

◦ A gap between theory and practice:
I DNNs can fit random labels
I SGD: zero training error and low test error
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Recall DNNs: the bad in robustness...

(a) Invisibility [81] (b) Stop sign classified as 45 mph sign [26]

the ugly in over-parameterization?
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A toy example: curve fitting
d 19

save

WARNING:matplotlib.legend:No handles with labels found to put in legend.
norm:  69.17524431176956

<function __main__.run(d, save=False)>

norm:  77.56023507806226

run(d=20)

norm:  1.4191230288785373

run(d=3)

run(d=1000)

 0 秒 完成时间：10:48
Colab 付费产品 - 在此处取消合同

norm:  1.393267492538217

norm:  0.8353271714048255

run(d=1)

(b) under-fitting

d 19

save

norm:  176.96526383385023

<function __main__.run(d, save=False)>

norm:  77.56023507806226

run(d=20)

norm:  1.4191230288785373

run(d=3)

run(d=1000)

(c) sweet spot

d 20

save

WARNING:matplotlib.legend:No handles with labels found to put in legend.
norm:  241.08926589939713

<function __main__.run(d, save=False)>

norm:  77.56023507806226

run(d=20)

norm:  1.4191230288785373

run(d=3)

run(d=1000)

(d) overfitting

 0 秒 完成时间：10:48
Colab 付费产品 - 在此处取消合同

norm:  1.393267492538217

norm:  0.8353271714048255

run(d=1)
(e) benign overfitting

Figure: Test performance on curve fitting: source from Open AI.
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Benign overfitting and double descent

◦ A bit more on benign overfitting [5, 15, 27]:
I model is very complex
I perfectly fit noisy data and generalize well

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd→C of the form

h(x )=

N∑

k=1

akφ(x ; vk ) where φ(x ; v):=e
√−1〈vk ,x〉,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N →∞, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H∞. While it is possible to directly use
H∞ [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd ×R, we find the predictor hn,N ∈
HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

∑n
i=1(h(xi)− yi)

2 over all functions h ∈HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm ‖h‖H∞ , which is generally
difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

Figure: classical learning theory vs. double descent: source from [8].
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Machine learning algorithms

complex in low dimensions simple in higher dimensions

feature mapping

separating
hyperplane

linear non‐separable linear separable
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Feature mapping: from kernel methods to neural networks

Neural tangent kernel (NTK) [44]

Kernel Methods Neural Networks

◦ data-independent ◦ data-dependent
feature mapping
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Feature mapping: from kernel methods to neural networks

Neural tangent kernel (NTK) [44]

Kernel Methods Neural Networks

◦ data-independent ◦ data-dependent
feature mapping

k(a,a′) = 〈φ(a), φ(a′)〉H
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Function space: from kernel methods to neural networks

Neural tagent kernel (NTK)

Kernel Methods Neural Networks

reproducing kernel Hilbert space (RKHS)

e.g., Hölder space, Besov space

Curse of dimensionality [3, 83, 13]

efficiently approximate non-smooth functions?
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NN architecture

h(0)(a) = a,

h(l)(a) =

activationy
σ


weight
↓[

Xl

] input features
↓[

h(l−1)(a)

],
hx(a) = h(L)(a) =

1
α
σ
(
XLh

(L−1)(a)
)
, x := [X1,X2, · · · ,XL] .

(L-Layer NN)

◦ Elements of NN architectures we will discuss in the sequel:
I Parameters: X1 ∈ Rm×p, XL ∈ R1×m, Xl ∈ Rm×m for l = 2, 3, · · · , L− 1 (weights).

I Initialization: X1 ∼ N (0, β2
1), XL ∼ N (0, β2

L), Xl ∼ N (0, β2) for l = 2, 3, · · · , L− 1 (weights).

I Activation function ReLU: σ(·) = max(·, 0) : R→ R.

I Without loss of generality, we will avoid the bias variables in the sequel.
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Summary on initialization

Table: Some commonly used initializations in neural networks.

Initialization name β2
1 β2 β2

L α

LeCun [50] 1
p

1
m

1
m

1

He [37] 2
p

2
m

2
m

1

NTK [1] 2
m

2
m

1 1

Xavier [31] 2
m+p

1
m

2
m+1 1

Mean-field [61] 1 1 1 m

E et al. [25] 1 1 β2
c 1

Figure: Phase diagram of two-layer ReLU NNs at infinite-width
limit in [56].
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Lazy-training

Definition (Lazy-training (Linear) regime [56])
Define an L-layer fully-connected ReLU NN via (L-Layer NN). After training time t, as m→∞, if the
following condition holds

sup
t∈[0,+∞)

‖Xl(t)−Xl(0)‖2
‖Xl(0)‖2

→ 0, ∀l ∈ [L] .

then the NN training dynamics falls into the lazy-training regime.

Remarks: ◦ In this regime, training h and h0 is equivalent if taking Taylor expansion.
◦ Which conditions allow for lazy training to occur ?

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 58/ 86



Lazy training: a consequence of overparametrization or scaling?

Theorem (Lazy training for two-layer ReLU networks [16], modified version)
Two layer networks h(a, {x,v}) : a 7→ α(m)

∑m

j=1 vjReLU(x>j a) with Gaussian initialization vi,xi ∼ N (0, β2)
will fall within the lazy regime as long as

lim
m→∞

mβ =∞ .

Remarks: ◦ The loss changes a lot but the neural network output changes little.
◦ Other conditions for deep neural networks can be found here [16, 7].
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Lazy training regime: visualization

FNN,m =

{
hm(a; {x,v}) =

m∑
i=1

vi max (〈xi,a〉 , 0) : vi ∈ R,xi ∈ Rd
}

X(0) X(t)

lazy training regime

Lecun, He

NTK

supt∈[0,+∞)

∥
Xl(t)−Xl(0)

∥
F∥

Xl(0)
∥

F
→ 0

Figure: Training dynamics of two-layer ReLU NNs under different initializations [44, 17, 57].
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Non-lazy training regime: visualization

X(0)

mean field regime

Xavier
X(t)

supt∈[0,+∞)

∥
Xl(t)−Xl(0)

∥
F∥

Xl(0)
∥

F
→ 1

Figure: Training dynamics of two-layer ReLU NNs under different initializations [44, 17, 57].
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Non-lazy training regime: visualization

X(0)

non-lazy training regime

X(t)

∞

supt∈[0,+∞)

∥
Xl(t)−Xl(0)

∥
F∥

Xl(0)
∥

F
→ ∞

Figure: Training dynamics of two-layer ReLU NNs under different initializations [44, 17, 57].
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Our understanding [Zhu, Liu, Chrysos, Cevher, NeurIPS (2022)]

Helps! [12] Hurts! [80, 42]

Definition (Lipschitz constant with respect to the input)
The Lipschitz constant of a differentiable h is L = supa∈Rp ‖∇ahx(a)‖?, where ‖·‖? is the dual norm.

Remarks: ◦ Lipschitz constant can be used to describe the worst-case robustness.

◦ Lipschitz constant theoretically correlates with the generalization ability of NN classifiers [4].
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Robustness in deep learning: metrics

◦ Conflicting messages that can change due to
I initialization (e.g., lazy training, non-lazy training)
I architecture (e.g., width, depth)

Definition (perturbation stability [87])
The perturbation stability of a ReLU DNN hx(a) is

P(h, ε) = Ea,â,x
∥∥∇ahx(a)>(a − â)

∥∥
2
, ∀a ∼ DA, â ∼ Unif(B(ε,a)) ,

where ε is the perturbation radius.
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Robustness in deep learning: metrics

◦ Conflicting messages that can change due to
I initialization (e.g., lazy training, non-lazy training)
I architecture (e.g., width, depth)

Definition (perturbation stability [87]: non-lazy training regime)
The perturbation stability of a ReLU DNN hx(a) is

P(h, ε) = Ea,â
∥∥∇ahx(a)>(a − â)

∥∥
2
, ∀a ∼ DA, â ∼ Unif(B(ε,a)) ,

where ε is the perturbation radius.
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Main results (Lazy-training regime)

Theorem [87]: · . Func(m,L, β)
Assumption Initialization Our bound for P(f, ε)/ε Trend of width m [1] Trend of depth L [1]

‖a‖2 = 1

Lecun initialization
(√

L3m
p

e−m/L
3

+
√

1
p

)
(
√

2
2 )L−2 ↗↘ ↘

He initialization
√

L3m
p

e−m/L
3

+
√

1
p

↗↘ ↗

NTK initialization
√

L3m
p

e−m/L
3

+ 1 ↗↘ ↗

[1] The larger perturbation stability means worse average robustness.

Remarks: ◦ width helps robustness in the over-parameterized regime
◦ depth helps robustness in Lecun initialization but hurts robustness in He/NTK initialization
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Experiments: lazy training experiment for FCNN

Metrics Ours (NTK initialization) [80] [42]

P(f , ε)/ε
√
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3

+ 1 L2m1/3
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√
mL 2

3L−5
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√
L
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Experiments: lazy training experiment for CNN
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Figure: Relationship between the perturbation stability and width of CNN under He initialization for different depths of
L = 4, 6, 8 and 10. More experimental results on ResNet can be found in [87].
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Main results (Non-lazy training regime)

A sufficient condition for DNNs
For large enough m and m� p, w.h.p, DNNs fall into non-lazy training regime if α� (m3/2

∑L

i=1 βi)
L.

Remarks: ◦ L = 2, α = 1, β1 = β2 = β ∼ 1
mc

with c > 1.5

Theorem (non-lazy training regime for two-layer NNs)
Under this setting with m� n2 and standard assumptions, then

perturbation stability ≤ Õ
(

n

mc+1.5

)
, whp.

Remarks: ◦ width helps robustness in the over-parameterized regime in both lazy/non-lazy training regime
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(

n

mc+1.5

)
, whp.

Remarks: ◦ width helps robustness in the over-parameterized regime in both lazy/non-lazy training regime

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 67/ 86



Experiment: Non-lazy training regime

lazy training ratio κ :=

∑L

l=1 ‖Xl(t)−Xl(0)‖F∑L
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Why robust generalization is difficult?

Figure: Robust classifiers exist if the perturbation
is less than the separation: source from [82].

perturbation ε Train-Train Test-Train
MNIST 0.1 0.737 0.812
CIFAR-10 0.031 0.212 0.220
SVHN 0.031 0.094 0.110
ResImageNet 0.005 0.180 0.224

Table: Separation of real data under typical perturbation radii. [82]

Theorem (Curse of dimensionality [52])
For a ReLU DNN with m parameter, for any ε-separated set A, B ⊂ [0, 1]p, it requires m = Ω(ε−p) to classify
A and B.
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Recall empirical risk minimization...
◦ Goal of ML: find a “good” estimator h approximating the lowest expected risk

inf
h∈H

R(h), R(h) := E(a,b)∼ρL(h(a), b),

given training data {(ai, bi)}ni=1

h? = arg min
h∈H

Rn(h) :=
1
n

n∑
i=1

L(hx(ai), bi)

I generalization error:

R(h?)−Rn(h?) = O(n−α), for some α > 0, whp.
I uniform convergence: suph∈H |R(h)−Rn(h)|

R(h?) ≤
1
n

n∑
i=1

L(h?x(ai), bi) +O

(√
c?

n

)
, whp.

uniform laws of large numbers + capacity control
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Rademacher complexity

Definition (Empirical Rademacher Complexity [6])
Let H be a class of functions of the form h : Rp → R. The empirical Rademacher complexity of H with respect
to A is defined as:

RA(H) B Ev sup
h∈H

1
n

n∑
i=1

〈vi, h(ai)〉 , Pr(vi = 1) = Pr(vi = −1) = 1/2 .

Remark: ◦ RA(H) measures how well we fit random (±1) with the output of an element of H on the set A.
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Visualizing Rademacher complexity

(a) High Rademacher Complexity (b) Large Generalization error
(memorization)

(c) Low Rademacher Complexity (d) Low Generalization error

Figure: Rademacher complexity and Generalization error

sup
h∈H

|R(h)−Rn(h)| . RA(H) +O
( 1
√
n

)
, whp.
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Why uniform convergence fails in deep learning?

R(h?) ≤
1
n

n∑
i=1

L(h?x(ai), bi)︸                        ︷︷                        ︸
=0

+O

(√
c?

n

)
, whp.

Figure: DNN Training curves on CIFAR10: source from [85]
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Why uniform convergence fails in deep learning?
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Figure: Interpolation still generalizes well under noisy data on MNIST: source from [9].
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Figure: Interpolation still generalizes well under noisy data on MNIST: source from [9].

◦ Observation: Generalization bounds vs. #training data [64, 86]
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When does uniform convergence work?

Figure: Uniform convergence of interpolators: source from [86].

Definition (One-side uniform convergence [86])

sup
‖x‖≤B,Rn(hx)=0

{R(hx)−Rn(hx)}
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Results for benign overfitting

Theorem (Simplified version of Corollary 1 in [47])
Under standard Gaussian data, noise setting, for over-parameterized least squares, we have

sup
‖x‖≤B,Rn(hx)=0

R(hx) .
B2Tr(Σ)

n
,whp.

Remarks: ◦ Via covariance splitting Σ = Σ1 ⊕ Σ2, we can improve this result if
I Σ1 is low rank
I Σ2 has fast eigenvalue decay [47]
I the target function has small norm
◦ Beyond linear regression [5]: NNs in non-lazy training regimes [27, 49]
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Beyond benign overfitting

A

Benign

trainset

true f ∗

predicted f̂

B

Tempered
C

Catastrophic

Figure: As n→∞ and fixed p, interpolating methods can exhibit three types of overfitting: source from [60].

◦ Under the settings below, we will have benign overfitting: R(h?x)→ σ2

I early-stopped DNNs
I kernel ridge regression
I k-NN (k ∼ logn)
I Nadaraya-Watson kernel smoothing
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Beyond benign overfitting

A

Benign

trainset

true f ∗

predicted f̂

B

Tempered
C

Catastrophic

Figure: As n→∞ and fixed p, interpolating methods can exhibit three types of overfitting: source from [60].

◦ Under the settings below, we will have tempered overfitting: R(h?x)→ cσ2

I interpolating DNNs
I Laplace kernel regression
I ReLU NTKs
I k-NN (constant k)
I simplicial interpolation
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Beyond benign overfitting

A

Benign

trainset

true f ∗

predicted f̂

B

Tempered
C

Catastrophic

Figure: As n→∞ and fixed p, interpolating methods can exhibit three types of overfitting: source from [60].

◦ Under the settings below, we will have catastrophic overfitting: R(h?x)→∞
I Gaussian kernel regression
I critically-parameterized regression
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How well do complexity measures correlate with generalization?

name definition correlation
Frobenius distance to initialization [65]

∑L

i=1 ‖Xi −X0
i ‖

2
F −0.263

Spectral complexity [4]
∏L

i=1 ‖Xi‖
(∑L

i=1
‖Xi‖

3/2
2,1

‖Xi‖3/2

)2/3

−0.537

Parameter Frobenius norm
∑L

i=1 ‖Xi‖2F 0.073
Path-norm [68]

∑
(i0,...,iL)

∏L

j=1

(
Xij ,ij−1

)2
0.373

Table: Complexity measures compared in the empirical study [45], and their correlation with generalization

Complexity measures are still far from explaining generalization in Deep Learning!

A more recent evaluation of many complexity measures is available [24].
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Double descent

◦ A failure of conventional wisdom

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd→C of the form

h(x )=

N∑

k=1

akφ(x ; vk ) where φ(x ; v):=e
√−1〈vk ,x〉,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N →∞, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H∞. While it is possible to directly use
H∞ [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd ×R, we find the predictor hn,N ∈
HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

∑n
i=1(h(xi)− yi)

2 over all functions h ∈HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm ‖h‖H∞ , which is generally
difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

Figure: The classical U-shaped risk curve vs. double-descent risk curve: source from [8].

I classical large-sample limit setting: n→∞ under fixed p
I modern high dimensional setting: n,m, p are comparably large
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Double descent curve in practice (I)
◦ Typical examples:
I linear/nonlinear regression [36]
I random features, random forest, and shallow neural networks [8]
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Figure: Experiments on MNIST: source from [8].
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Double descent curve in practice (II)

DEEP DOUBLE DESCENT:
WHERE BIGGER MODELS AND MORE DATA HURT
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ABSTRACT

We show that a variety of modern deep learning tasks exhibit a “double-descent”
phenomenon where, as we increase model size, performance first gets worse and
then gets better. Moreover, we show that double descent occurs not just as a
function of model size, but also as a function of the number of training epochs.
We unify the above phenomena by defining a new complexity measure we call
the effective model complexity and conjecture a generalized double descent with
respect to this measure. Furthermore, our notion of model complexity allows us to
identify certain regimes where increasing (even quadrupling) the number of train
samples actually hurts test performance.

1 INTRODUCTION

Figure 1: Left: Train and test error as a function of model size, for ResNet18s of varying width
on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. All models
trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.

The bias-variance trade-off is a fundamental concept in classical statistical learning theory (e.g.,
Hastie et al. (2005)). The idea is that models of higher complexity have lower bias but higher vari-
ance. According to this theory, once model complexity passes a certain threshold, models “overfit”
with the variance term dominating the test error, and hence from this point onward, increasing model
complexity will only decrease performance (i.e., increase test error). Hence conventional wisdom
in classical statistics is that, once we pass a certain threshold, “larger models are worse.”

However, modern neural networks exhibit no such phenomenon. Such networks have millions of
parameters, more than enough to fit even random labels (Zhang et al. (2016)), and yet they perform
much better on many tasks than smaller models. Indeed, conventional wisdom among practitioners
is that “larger models are better’’ (Krizhevsky et al. (2012), Huang et al. (2018), Szegedy et al.

⇤Work performed in part while Preetum Nakkiran was interning at OpenAI, with Ilya Sutskever. We espe-
cially thank Mikhail Belkin and Christopher Olah for helpful discussions throughout this work. Correspondence
Email: preetum@cs.harvard.edu

†Equal contribution

1

ar
X

iv
:1

91
2.

02
29

2v
1 

 [c
s.L

G
]  

4 
D

ec
 2

01
9

Figure: Left: Train and test error as a function of model size, for ResNet18s of varying width on CIFAR-10 with 15% label noise.
Right: Test error, shown for varying train epochs: source from [66].
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Double descent curve in practice (III)

Figure: Left: The double descent phenomenon, where the number of parameters is used as the model complexity. Middle: The
norm of the learned model is peaked around n ≈ p. Right: The test error against the norm of the learnt model. The color bar
indicate the number of parameters and the arrows indicates the direction of increasing model size. Their relationship are closer
to the convention wisdom than to a double descent. source: [69]. This is the same setting as in Section 5.2 of [67].

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 81/ 86



From neural networks to random features model [73]

◦ 1-hidden-layer neural network with m neurons (fully-connected architecture)

I Let X1 ∈ Rm×p, a ∈ Rp, X2 ∈ Rm, and µ2 ∈ R

hx(a) :=

[
X2

] activationy
σ


weight
↓[

X1

] input
↓[
a

]
+

bias
↓[
µ1

]
︸                                                      ︷︷                                                      ︸

hidden layer = fixed random features ϕ(a)

+

bias
↓[
µ2

]
, x := [X1,X2, µ1, µ2]

I X1: Gaussian initialization and then fixed
I X2: to be learned
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Our understanding on double descent [Liu, Suykens, Cevher, NeurIPS (2022)]

◦ High dimensional setting: #training data n, #neurons m, input dimension p are comparably large.

(a) SGD vs. min-norm solution (b) Bias . B1 + B2 + B3 (c) Variance . V1 + V2 + V3

Figure: Test MSE, Bias, and Variance of RF regression as a function of the ratio m/n on MNIST data set (digit 3 vs. 7) for
p = 784 and n = 600 across the Gaussian kernel. Source: [54].

Remarks: ◦ interplay between excess risk and optimization
◦ monotonic decreasing bias and unimodal variance ⇒ double descent
◦ converge to O(1) order
◦ constant step-size SGD vs. min norm solution
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Conclusions: Good, bad, ugly

good bad ugly
kernel methods analysis performance curse of dimensionality
neural networks performance analysis over-parameterization

robustness width depth initialization
generalization benign overfitting catastrophic overfitting model complexity

X(0) X(t)

lazy training regime
Lecun, He NTK

mean field regime
Xavier

non-lazy training regime

X(t)

∞

supt∈[0,+∞)

∥
Xl(t)−Xl(0)

∥
F∥

Xl(0)
∥

F
→ ???
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Conclusions: Function spaces vs models

Understanding from a function space perspective!

RKHS kernel methods1

hyper-RKHS hyper-kernel methods2

Barron space two-layer NNs3

Besov space deep NNs4

bivariate form

variational form

smoothness

Fanghui Liu web: https: // www. lfhsgre. org/ fanghui.liu@epfl.ch

Research Statement
Understanding generalization in machine learning algorithms: a function approximation perspective

Understanding and predicting the unknown and uncertain real world from past observations is
always an enduring appealing and outstanding topic in artificial intelligence. My research attempts
to achieve this ultimate and ideal goal by concentrating on theoretical understanding generalization
properties of machine learning algorithms. The “generalization” terminology means that a machine
learning model, learned from the past observations, is able to generalize on unseen data in super-
vised learning. This concept is also suitable to sequential decision, e.g., reinforcement learning (RL)
that an agent needs to learn how to predict and control unknown and often stochastic environments,
i.e., exploration.

Achieving this goal requires to study what regularizer Ω(f) can be defined and controlled on the
functions defined by models, and what function space F is suitable for learning.

The commonly used function space in learning theory is the reproducing kernel Hilbert space
(RKHS) [Aro50], which provides the ability to approximate functions by nonparametric functional
representations. The point-wise convergence property makes RKHS an appealing choice in ma-
chine learning problems with nice theoretical guarantees in an approximation theory view. My
major research interests starts with kernel learning algorithms, kernel approximation for scalabil-
ity, and theoretically understanding machine learning algorithms in under- and over-parameterized
regimes.

random
features

kernel
methods

neural
networks

scalability

over-parameterization
NTK

RKHS hyper-RKHS Barron space Besov space

kernel methods hyper-kernel methods two-layer NNs DNNs

kernel learning kernel learning double descent generalization, RL

Laplace in E Laplace in N Laplace in N

Legendre in ϵ = E
N Legendre in ρ = N

V
Legendre in ρ = N

V

1 Current achievements
My research endeavour has led to several scientific contributions at the flagship conferences and
journals in machine learning. Here I center around the work in recent years on learning in hyper-
RKHS [LSH+21, JMLR21], kernel approximation via random features, double descent [LSC22,
NeurIPS22], deep neural function approximation [LVC22, NeurIPS22].

1.1 Learning with kernels and random features

Learning in hyper-RKHS: The structure of RKHS is determined by the reproducing kernel
k, but selecting appropriate kernels is not a trivial task. More importantly, RKHS is not large
enough, for example, to approximate a single ReLU neuron with an ε-approximation error, kernel

Page 1 of 6

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 85/ 86



Thanks for your attention!

Q & A
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