
Neural Networks: The Good, The Bad, The Ugly

Fanghui Liu (EPFL), Johan A.K. Suykens (KU Leuven), Volkan Cevher (EPFL)

Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

Switzerland

ICASSP 2023, Rhodes Island, Greece

Acknowledgements
◦ LIONS group members (current & alumni): https://lions.epfl.ch

I Quoc Tran Dinh, Fabian Latorre, Ahmet Alacaoglu, Maria Vladarean, Chaehwan Song, Ali Kavis, Mehmet
Fatih Sahin, Thomas Sanchez, Thomas Pethick, Igor Krawczuk, Leello Dadi, Paul Rolland, Junhong Lin,
Marwa El Halabi, Baran Gozcu, Quang Van Nguyen, Yurii Malitskyi, Armin Eftekhari, Ilija Bogunovic,
Yen-Huan Li, Anastasios Kyrillidis, Ya-Ping Hsieh, Bang Cong Vu, Kamal Parameswaran, Jonathan Scarlett,
Luca Baldassarre, Bubacarr Bah, Grigorios Chrysos, Stratis Skoulakis, Fanghui Liu, Kimon Antonakopoulos,
Andrej Janchevski, Pedro Abranches, Luca Viano, Zhenyu Zhu, Yongtao Wu, Wanyun Xie, Alp Yurtsever.

I EE-556 (Mathematics of Data): Course material

◦ Many talented faculty collaborators

I Panayotis Mertikopoulos, Georgios Piliouras, Kfir Levy, Francis Bach, Joel Tropp, Madeleine Udell, Stephen
Becker, Suvrit Sra, Mark Schmidt, Larry Carin, Michael Kapralov, Martin Jaggi, David Carlson, Adrian
Weller, Adish Singla, Lorenzo Rosasco, Alessandro Rudi, Stefanie Jegelka, Panos Patrinos, Andreas Krause,
Niao He, Bernhard Schölkopf, Olivier Fercoq...

◦ Many talented collaborators

I Francesco Locatello, Chris Russell, Matthaeus Kleindessner, Puya Latafat, Andreas Loukas, Yu-Guan Hsieh

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 2/ 86

https://lions.epfl.ch
https://www.epfl.ch/labs/lions/teaching/ee-556-mathematics-of-data-from-theory-to-computation/

Let’s start with what is really on everybody’s mind: GPT-4

◦ On the shoulders of giants: Supervised learning + unsupervised learning + reinforcement learning.

◦ Previous GPTs: text ⇒ text.

◦ GPT-4: allows text + image ⇒ text.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 3/ 86

A deep learning optimization problem in supervised learning

Definition (Optimization formulation)
The “deep-learning” problem with a neural network hx(a) is given by

x? ∈ arg min
x∈X

{
f(x) :=

1
n

n∑
i=1

L(hx(ai), bi)

}
,

where X denotes the constraints and L is a loss function.

◦ A single hidden layer neural network with params x := [X1,X2, µ1, µ2]

hx(a) :=

[
X2

] activationy
σ

weight
↓[

X1

] input
↓[
a

]
+

bias
↓[
µ1

]
︸ ︷︷ ︸

hidden layer = learned features

+

bias
↓[
µ2

]

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 4/ 86

A deep learning optimization problem in supervised learning

Definition (Optimization formulation)
The “deep-learning” problem with a neural network hx(a) is given by

x? ∈ arg min
x∈X

{
f(x) :=

1
n

n∑
i=1

L(hx(ai), bi)

}
,

where X denotes the constraints and L is a loss function.

Some frequently used architectures
I Transformers with self-attention
I Recurrent neural networks
I Convolutional neural networks
I Multi layer perceptron. . .

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 4/ 86

Robustness issues in deep learning: Invisibility [81]

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 5/ 86

Robustness issues in deep learning: Acceleration1

1https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 6/ 86

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/

Robustness issues in deep learning: Injections2

2https://www.robustintelligence.com/blog-posts/prompt-injection-attack-on-gpt-4

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 7/ 86

https://www.robustintelligence.com/blog-posts/prompt-injection-attack-on-gpt-4

Today: “Basic” robust machine learning

min
x∈X

max
y∈Y

Φ(x,y)

◦ A seemingly simple optimization formulation

◦ Critical in machine learning with many applications

I Adversarial examples and training
I Generative adversarial networks
I Robust reinforcement learning

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 8/ 86

Warm up: Flexibility of the template

Φ? = min
x∈X

max
y∈Y

Φ(x,y) (argmin, argmax→ x?,y?)

f? = min
x:x∈X

f(x) (argmin→ x?)

◦ (eula) In the sequel,

I the set X is convex

I all convergence characterizations are with feasible iterates xk ∈ X

I L-smooth means ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ X

I ∇ may refer to the generalized subdifferential

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 9/ 86

Warm up: Flexibility of the template

Φ? = min
x∈X

max
y:y∈Y

Φ(x,y)︸ ︷︷ ︸
f(x)

(argmin, argmax→ x?,y?)

f? = min
x:x∈X

f(x) (argmin→ x?)

◦ (eula) In the sequel,

I the set X is convex

I all convergence characterizations are with feasible iterates xk ∈ X

I L-smooth means ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ X

I ∇ may refer to the generalized subdifferential

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 9/ 86

Warm up: Flexibility of the template

Φ? = min
x∈X

max
y:y∈Y

Φ(x,y)︸ ︷︷ ︸
f(x)

(argmin, argmax→ x?,y?)

f? = min
x:x∈X

f(x) (argmin→ x?)

◦ (eula) In the sequel,

I the set X is convex

I all convergence characterizations are with feasible iterates xk ∈ X

I L-smooth means ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ X

I ∇ may refer to the generalized subdifferential

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 9/ 86

Warm up: Flexibility of the template

Φ? = min
x∈X

max
y:y∈Y

Φ(x,y)︸ ︷︷ ︸
f(x)

(argmin, argmax→ x?,y?)

f? = min
x:x∈X

f(x) (argmin→ x?)

◦ (eula) In the sequel,

I the set X is convex

I all convergence characterizations are with feasible iterates xk ∈ X

I L-smooth means ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ X

I ∇ may refer to the generalized subdifferential

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 9/ 86

Towards adversarial training for robustness

Adversarial Training
Let hx : Rn → R be a model with parameters x and let {(ai,bi)}ni=1, with the data ai ∈ Rp and the labels bi.
The problem of adversarial training is the following adversarial optimization problem

min
x
E(a,b)∼P

[
max
δ:‖δ‖≤ε

L(hx (ai + δ),bi)
]
≈ min

x

1
n

n∑
i=1

[
max
δ:‖δ‖≤ε

L(hx (ai + δ),bi)
]
.

This problem can be formulated within the template minx∈X maxy∈Y Φ(x,y).

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 10/ 86

Solving the outer problem: Solution concepts

◦ Consider the finite sum (e.g., ERM) setting

f? := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}
.

◦ Goal: Find x? such that ∇f(x?) = 0.(a) (b)

(c) (d)

Figure 5: Illustrations of three different types of saddle points (a-c) plus a gutter structure (d). Note
that for the gutter structure, any point from the circle x2 + y2 = 1 is a minimum. The shape of the
function is that of the bottom of a bottle of wine. This means that the minimum is a “ring” instead of
a single point. The Hessian is singular at any of these points. (c) shows a Monkey saddle where you
have both a min-max structure as in (b) but also a 0 eigenvalue, which results, along some direction,
in a shape similar to (a).

12

Figure: λi , 0 for all i

(a) (b)

(c) (d)

Figure 5: Illustrations of three different types of saddle points (a-c) plus a gutter structure (d). Note
that for the gutter structure, any point from the circle x2 + y2 = 1 is a minimum. The shape of the
function is that of the bottom of a bottle of wine. This means that the minimum is a “ring” instead of
a single point. The Hessian is singular at any of these points. (c) shows a Monkey saddle where you
have both a min-max structure as in (b) but also a 0 eigenvalue, which results, along some direction,
in a shape similar to (a).

12

Figure: λi = 0 for some i

Recall (Classification of critical points)
Let f : Rp → R be twice differentiable and let x̄ be a critical point, i.e., ∇f(x̄) = 0. Let {λi}di=1 be the
eigenvalues of the hessian ∇2f(x̄), then
I λi > 0 for all i ⇒ x̄ is a local minimum
I λi < 0 for all i ⇒ x̄ is a local maximum
I λi > 0, λj < 0 for some i, j and λi , 0 for all i ⇒ x̄ is a saddle point
I Other cases ⇒ inconclusive

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 11/ 86

Solving the outer problem

Adversarial Training
Let hx : Rn → R be a model with parameters x and let {(ai,bi)}ni=1, with ai ∈ R

p and bi be the
corresponding labels. The adversarial training optimization problem is given by

min
x

 1
n

n∑
i=1

fi(x) :=
1
n

n∑
i=1

[
max
δ:‖δ‖≤ε

L(hx (ai + δ),bi)
]

︸ ︷︷ ︸
=:fi(x)

 .

Note that L is not continuously differentiable due to ReLU, max-pooling, etc.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 12/ 86

Solving the outer problem: Gradient computation

Adversarial Training
Let hx : Rp → R be a model with parameters x and let {(ai,bi)}ni=1, with ai ∈ R

p and bi be the
corresponding labels. The adversarial training optimization problem is given by

min
x

 1
n

n∑
i=1

fi(x) :=
1
n

n∑
i=1

[
max
δ:‖δ‖≤ε

L(hx (ai + δ),bi)
]

︸ ︷︷ ︸
=:fi(x)

 .

Note that L is not continuously differentiable due to ReLU, max-pooling, etc.

Question
How can we compute the following stochastic gradient (i.e., Ei∇xfi(x) = ∇xfi(x) for i ∼ Uniform{1, . . . , n}):

∇xfi(x) := ∇x

(
max
δ:‖δ‖≤ε

L(hx (ai + δ),bi)
)

?

◦ Challenge: It involves differentiating with respect to a maximization.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 13/ 86

Basic questions on solution concepts
◦ Consider the finite sum setting

f? := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}
.

◦ Goal: Find x? such that ∇f(x?) = 0.

1. Does SGD converge with probability 1?
[10, 75, 55, 62]

2. Does SGD avoid non-minimum points
with probability 1? [51, 29, 62]

3. How fast does SGD converge to local
minimizers? [29, 30, 62]

4. Can SGD converge to global
minimizers?
[41, 43, 32, 84, 35, 70, 53, 22, 90, 46, 76]

Vanilla (Minibatch) SGD
Input: Stochastic gradient oracle g, initial point x0, step size αk
1. For k = 0, 1, . . .:

obtain the (minibatch) stochastic gradient gk
update xk+1 ← xk − γkgk

Perturbed Stochastic Gradient Descent [28]
Input: Stochastic gradient oracle g, initial point x0, step size αk
1. For k = 0, 1, . . .:

sample noise ξ uniformly from unit sphere
update xk+1 ← xk − αk(gk + ξ)

?Stochastic Gradient Langevin Dynamics [79]
Input: Stochastic gradient oracle g, initial point x0, step size αk
1. For k = 0, 1, . . .

sample noise ξ standard Gaussian
update xk+1 ← xl − αkgk +

√
2αkξ

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 14/ 86

Basic questions on solution concepts
◦ Consider the finite sum setting

f? := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}
.

◦ Goal: Find x? such that ∇f(x?) = 0.

1. Does SGD converge with probability 1?
[10, 75, 55, 62]

2. Does SGD avoid non-minimum points
with probability 1? [51, 29, 62]

3. How fast does SGD converge to local
minimizers? [29, 30, 62]

4. Can SGD converge to global
minimizers?
[41, 43, 32, 84, 35, 70, 53, 22, 90, 46, 76]

Vanilla (Minibatch) SGD
Input: Stochastic gradient oracle g, initial point x0, step size αk
1. For k = 0, 1, . . .:

obtain the (minibatch) stochastic gradient gk
update xk+1 ← xk − γkgk

Perturbed Stochastic Gradient Descent [28]
Input: Stochastic gradient oracle g, initial point x0, step size αk
1. For k = 0, 1, . . .:

sample noise ξ uniformly from unit sphere
update xk+1 ← xk − αk(gk + ξ)

?Stochastic Gradient Langevin Dynamics [79]
Input: Stochastic gradient oracle g, initial point x0, step size αk
1. For k = 0, 1, . . .

sample noise ξ standard Gaussian
update xk+1 ← xl − αkgk +

√
2αkξ

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 14/ 86

Q1: Does SGD converge?

◦ SGD converges to the critical points of f as k →∞.

1. GD converges from any intialization with constant step-size and full gradients

2. With probability 1, (P)SGD does not converge with constant step-size α [10, 75]

3. With probability 1, SGD converges with vanishing step-size if xk is bounded with probability 1 [55, 10]

Boundedness is not required (Theorem 1 of [62])
Assume Lipschitzness, sublevel regularity, E‖g‖q ≤ σq and

∑
k
α

1+q/2
k

<∞ (q ≥ 2). Then, xk converges with
probability 1.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 15/ 86

Q2: Does SGD avoid saddle points?

◦ SGD avoids strict saddles (λmin(∇2f(x̄)) < 0)

1. GD avoids strict saddles from almost all initializations [51]

2. With probability 1− ζ, PSGD with constant α escapes strict saddles after Ω
(
log(1/ζ)/α2

)
iterations [29]

I However, SGD does not converge with constant α

I We cannot take ζ = 0

SGD avoids traps almost surely (Theorem 3 of [62])
Assume bounded uniformly exciting noise and αk = O

(
1
kκ

)
for κ ∈ (0, 1]. Then, SGD avoids strict saddles

from any initial condition with probability 1.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 16/ 86

Q3: How fast does SGD converge to local minimizers?

◦ SGD remains close to Hurwicz minimizers (i.e., x∗ : λmin(∇2f(x∗)) > 0)

1. SGD with constant α can obtain objective value ε-close to a Hurwicz minimizer in O(1/ε2)-iterations
[29, 30]

I However, SGD does not converge with constant α

I Need averaging which is problematic in non-convex optimization

Using a vanishing step-size helps! (Theorem 4 of [62])
Using αk = O

(
1
k

)
, SGD enjoys a O

(
1
k

)
convergence rate in objective value.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 17/ 86

Using 1/k step-size decrease helps in practice

◦ ResNet training at different cool-down cut-offs

cutoff=70
cutoff=80
cutoff=90
cutoff=95
constant

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1.0

epoch

Lo
ss
V
al
ue

cutoff=70
cutoff=80
cutoff=90
cutoff=95
constant

30 40 50 60 70 80 90 100
80

81

82

83

84

85

epoch

A
cc
ur
ac
y
-
%

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 18/ 86

Basic results on adaptive algorithms

GD/SGD Accelerated GD/SGD AdaGrad AcceleGrad/UniXgrad Adam/AMSGrad

Convex, stochastic O
(

1√
k

)
3 O

(
1√
k

)
3 O

(
1√
k

)
4 O

(
1√
k

)
5,6 O

(
1√
k

)
7

Convex, deterministic, L-smooth O
(

1
k

)
3 O

(
1
k2

)
3 O

(
1
k

)
5 O

(
1
k2

)
5,6 O

(
1
k

)
8

Nonconvex, stochastic, L-smooth O
(

1√
k

)
3 O

(
1√
k

)
3 O

(
1√
k

)
9 ? O

(
1√
k

)
10

Nonconvex, deterministic, L-smooth O
(

1
k

)
3 O

(
1
k

)
3 O

(
1
k

)
9 ? O

(
1
k

)
8

3 Lan, First-order and Stochastic Optimization Methods for Machine Learning. Springer Nature, 2020.
4 Duchi, Hazan, Singer, Adaptive subgradient methods for online learning and stochastic optimization, JMLR, 2011.
5 Levy, Yurtsever, Cevher, Online adaptive methods, universality and acceleration, NeurIPS 2018.
6 Kavis, Levy, Bach, Cevher, UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization, NeurIPS, 2019.
7 Reddi, Kale, Kumar, On the convergence of adam and beyond, ICLR, 2018.
Alacaoglu, Malitsky, Mertikopoulos, Cevher, A new regret analysis for Adam-type algorithms, ICML 2020.
8 Barakat, Bianchi, Convergence Rates of a Momentum Algorithm with Bounded Adaptive Step Size for Nonconvex Optimization, ACML, 2020.
9 Ward, Xu, Bottou, AdaGrad stepsizes: Sharp convergence over nonconvex landscapes, ICML 2019.
10 Alacaoglu, Malitsky, Cevher, Convergence of adaptive algorithms for weakly convex constrained optimization, NeurIPS, 2021.
Chen, Zhou, Tang, Yang, Cao, Gu, Closing the generalization gap of adaptive gradient methods in training deep neural networks, IJCAI 2020.
Chen, Liu, Sun, Hong, On the convergence of a class of adam-type algorithms for non-convex optimization, ICLR 2018.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 19/ 86

Danskin’s Theorem (1966): How do we compute the gradient?

Theorem ([18])
Let S be compact set, Φ : Rp ×S be continuous such that Φ(·,y) is differentiable for all y ∈ S, and ∇xΦ(x,y)
be continuous on Rp × S. Define

f(x) B max
y∈S

Φ(x,y), S?(x) B arg max
y∈S

Φ(x,y).

Let γ ∈ Rp, and ‖γ‖2 = 1. The directional derivative Dγf(x̄) of f in the direction γ at x̄ is given by

Dγf(x̄) = max
y∈S?(x̄)

〈γ,∇xΦ(x̄,y)〉.

An immediate consequence
If δ? ∈ arg maxδ:‖δ‖≤ε L(hx (ai + δ),bi) is unique, then we have

∇xfi(x) = ∇xL(hx (ai + δ?),bi) .

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 20/ 86

Optimized perturbations are typically not unique!

0.0 0.2 0.4 0.6 0.8 1.0

‖δ − δ′‖2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en
si
ty

0.56 0.58 0.60 0.62 0.64

Loss

0

200

400

600

800

1000

D
en
si
ty

Clean loss

Adversarial loss

Figure: (left) Pairwise `2-distances between “optimized” perturbations with different initializations are bounded away from zero.
(right) The losses of multiple perturbations on the same sample concentrate around a value much larger than the clean loss.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 21/ 86

Theoretical foundations

?

unique δ? non-unique δ?
∇xΦ(x, δ?) ∇xf(x) descent direction [58]

level sets

xk
rf(xk)

pk
xk + D(f, xk)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 22/ 86

Theoretical foundations ?

unique δ? non-unique δ?
∇xΦ(x, δ?) ∇xf(x) descent direction [58]

level sets

xk
rf(xk)

pk
xk + D(f, xk)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 22/ 86

A counterexample

f(x) B max
δ∈[−1,1]

xδ = |x| .

◦ We have S B [−1, 1] and Φ(x, δ) = xδ.

◦ At x = 0, we have S?(0) = [−1, 1].

◦ We can choose δ = 1 ∈ S?(0): Φ(x, 1) = x.

I −∇xΦ(0, 1) = −1 , 0.

I Is −1 a descent direction at x = 0?

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 23/ 86

A counterexample

f(x) B max
δ∈[−1,1]

xδ = |x| .

◦ We have S B [−1, 1] and Φ(x, δ) = xδ.

◦ At x = 0, we have S?(0) = [−1, 1].

◦ We can choose δ = 1 ∈ S?(0): Φ(x, 1) = x.

I −∇xΦ(0, 1) = −1 , 0.

I Is −1 a descent direction at x = 0?

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 23/ 86

Our understanding [Latorre, Krawczuk, Dadi, Pethick, Cevher, ICLR (2023)]

◦ The corollary in [58] is false (it is subtle!).

◦ We constructed a counter example & proposed an alternative way (DDi) of computing “the gradient”:

unique δ? non-unique δ?
∇xΦ(x, δ?) ∇xf(x) could be ascent direction!

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

Contour plot

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.000

3.0
00

4.0
00

4.0
00

5.0
00

5.0
00

6.000

6.000

7.000 7.00
0

7.00
0 7.000

DDi

PGD

0 10 20 30 40 50

Iteration

1.0

1.2

1.4

1.6

1.8

2.0

2.2

R
ob
u
st

L
os
s

DDi

PGD

0 25 50 75 100 125 150 175 200

Epoch

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

R
ob
u
st

ac
cu
ra
cy

DDD

PGD

Figure: Left and middle pane: comparison DDi and PGD ([58]) on a synthetic problem. Right pane: DDi vs PGD on CIFAR10.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 24/ 86

Comparison with the state-of-the-art

0 25 50 75 100 125 150 175 200

Epoch

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

R
ob

u
st

ac
cu
ra
cy

DDi

PGD

0 25 50 75 100 125 150 175 200

Epoch

0.1

0.2

0.3

0.4

0.5

R
ob

u
st

ac
cu

ra
cy

DDi-Theory

PGD-Theory

DDi-BN-NonSmooth

DDi-NonSmooth

DDi-NonSmooth+Mom

PGD-BN-NonSmooth

PGD-NonSmooth

PGD-NonSmooth+Mom

Figure: (left) PGD vs DDi on CIFAR10, in a setting covered by theory. (right) An ablation testing the effect of adding back the
elements not covered by theory (BN,ReLU,momentum).

DDi + Graduate Student Descent may improve things?

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 25/ 86

Comparison with the state-of-the-art

0 25 50 75 100 125 150 175 200

Epoch

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

R
ob

u
st

ac
cu
ra
cy

DDi

PGD

0 25 50 75 100 125 150 175 200

Epoch

0.1

0.2

0.3

0.4

0.5

R
ob

u
st

ac
cu

ra
cy

DDi-Theory

PGD-Theory

DDi-BN-NonSmooth

DDi-NonSmooth

DDi-NonSmooth+Mom

PGD-BN-NonSmooth

PGD-NonSmooth

PGD-NonSmooth+Mom

Figure: (left) PGD vs DDi on CIFAR10, in a setting covered by theory. (right) An ablation testing the effect of adding back the
elements not covered by theory (BN,ReLU,momentum).

DDi + Graduate Student Descent may improve things?

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 25/ 86

Learning without concentration

◦ We can minimize W1 (µ̂n, hx#pΩ) with respect to x.

◦ Figure: Empirical distribution (blue), µ̂n =
∑n

i=1 δi

A plug-in empirical estimator
Using the triangle inequality for Wasserstein distances we can upper bound in the follow way,

W1(µ\, hx#pΩ) ≤W1(µ\, µ̂n) +W1(µ̂n, hx#pΩ), (1)

where µ̂n is the empirical estimator of µ\ obtained from n independent samples from µ\.

Theorem (Slow convergence of empirical measures in 1-Wasserstein [78, 23])
Let µ\ be a measure defined on Rp and let µ̂n be its empirical measure. Then the µ̂n converges, in the worst
case, at the following rate,

W1(µ\, µ̂n) & n−1/p. (2)

Remarks: ◦ Using an empirical estimator in high-dimensions is terrible in the worst case.
◦ However, it does not directly say that W1

(
µ\, hx#pΩ

)
will be large.

◦ So we can still proceed and hope our parameterization interpolates harmlessly.
Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 26/ 86

Duality of 1-Wasserstein
◦ How do we get a sub-gradient of W1 (µ̂n, hx#pΩ) with respect to x?

Theorem (Kantorovich-Rubinstein duality)

W1(µ, ν) = sup
d
{〈d, µ〉 − 〈d, ν〉 : d is 1-Lipschitz} (3)

Remark: ◦ d is the “dual” variable. In the literature, it is commonly referred to as the “discriminator.”

Inner product is an expectation

〈d, µ〉 =
∫

ddµ =
∫

d(a)dµ(a) = Ea∼µ [d(a)] . (4)

Kantorovich-Rubinstein duality applied to our objective

W1 (µ̂n, hx#ω) = sup
{
Ea∼µ̂n [d(a)]−Ea∼hx#ω [d(a)] : d is 1-Lipschitz

}
(5)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 27/ 86

Another minimax example: Generative adversarial networks (GANs)
◦ Ingredients:
I fixed noise distribution pΩ (e.g., normal)
I target distribution µ̂n (natural images)
I X parameter class inducing a class of functions (generators)
I Y parameter class inducing a class of functions (dual variables)

Wasserstein GANs formulation [2]
Define a parameterized function dy(a), where y ∈ Y such that dy(a) is 1-Lipschitz. In this case, the
Wasserstein GAN training problem is given by

min
x∈X

(
max
y∈Y

Ea∼µ̂n [dy(a)]−Eω∼pΩ [dy(hx(ω))]
)
. (6)

This problem is already captured by the template minx∈X maxy∈Y Φ(x,y). Note that the original problem is a
direct non-smooth minimization problem and the Rubinstein-Kantarovic duality results in the minimax template.

Remarks: ◦ Cannot solve in a manner similar to adversarial training a la Danskin. Need a direct approach.
◦ Scalability, mode collapse, catastrophic forgetting. Heuristics galore!
◦ Enforce Lipschitz constraint weight clipping, gradient penalty, spectral normalization [2, 34, 63].

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 28/ 86

Abstract minmax formulation

Minimax formulation

min
x∈X

max
y∈Y

Φ(x,y), (7)

where
I Φ is differentiable and nonconvex in x and nonconcave in y,
I The domain is unconstrained, specifically X = Rm and Y = Rn.

◦ Key questions:

1. Where do the algorithms converge?

2. When do the algorithm converge?

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 29/ 86

Solving the minimax problem: Solution concepts

◦ Consider the unconstrained setting:

Φ? = min
x

max
y

Φ(x,y)

◦ Goal: Find an LNE point (x?,y?).
Figure: The monkey saddle
Φ(x, y) = x3 − 3xy2.

Figure: The weird saddle
Φ(x, y) = −x2y2 + xy.

Definition (Local Nash Equilibrium)
A pure strategy (x?,y?) is called a local Nash equilibrium if

Φ (x?,y) ≤ Φ (x?,y?) ≤ Φ (x,y?) (LNE)

for all x and y within some neighborhood of x? and y?, i.e.,
‖x− x?‖ ≤ ε and ‖y− y?‖ ≤ ε for some ε > 0.

Necessary conditions
Through a Taylor expansion around x? and
y? one can show that a LNE implies

∇xΦ(x,y),−∇yΦ(x,y) = 0;
∇xxΦ(x,y),−∇yyΦ(x,y) � 0.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 30/ 86

Abstract minmax formulation
Minimax formulation

min
x∈X

max
y∈Y

Φ(x,y), (8)

where
I Φ is differentiable and nonconvex in x and nonconcave in y,
I The domain is unconstrained, specifically X = Rm and Y = Rn.

◦ Key questions:

1. Where do the algorithms converge?

2. When do the algorithm converge?

A buffet of negative results [19]
“Even when the objective is a Lipschitz and smooth differentiable function, deciding whether a min-max point
exists, in fact even deciding whether an approximate min-max point exists, is NP-hard. More importantly, an
approximate local min-max point of large enough approximation is guaranteed to exist, but finding one such
point is PPAD-complete. The same is true of computing an approximate fixed point of the (Projected) Gradient
Descent/Ascent update dynamics.”

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 31/ 86

Basic algorithms for minimax
◦ Given minx∈X maxy∈Y Φ(x,y), define V (z) = [∇xΦ(x,y),−∇yΦ(x,y)] with z = [x,y].

2 1 0 1 2
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

GDA
OGDA
EG
PP
Critical point

Figure: Trajectory of different algorithms for a simple bilinear game minx maxy xy.

◦ (In)Famous algorithms
I Gradient Descent Ascent (GDA)
I Proximal point method (PPM) [74, 33]
I Extra-gradient (EG) [48]
I Optimistic GDA (OGDA) [88, 59]
I Reflected-Forward-Backward-Splitting (RFBS) [14]

◦ EG and OGDA are approximations of the PPM
I zk+1 = zk − αV (zk).
I zk+1 = zk − αV (zk+1).
I zk+1 = zk − αV (zk − αV (zk−1)).
I zk+1 = zk − α[2V (zk)− V (zk−1)].
I zk+1 = zk − αV (2zk − zk−1).

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 32/ 86

Where do the algorithms converge?

◦ Recall: Given minx∈X maxy∈Y Φ(x,y), define V (z) = [∇xΦ(x,y),−∇yΦ(x,y)] with z = [x,y].

◦ Given V (z), define stochastic estimates of V (z, ζ) = V (z) + U(z, ζ), where

I U(z, ζ) is a bias term,

I We often have unbiasedness: EU(z, ζ) = 0,

I The bias term can have bounded moments,

I We often have bounded variance: P (‖U(z, ζ) ‖ ≥ t) ≤ 2 exp− t2

2σ2 for σ > 0.

◦ An abstract template for generalized Robbins-Monro schemes, dubbed as A:

zk+1 = zk − αkV (zk, ζk).

The dessert section in the buffet of negative results: [39]
1. Bounded trajectories of A always converge to an internally chain-transitive (ICT) set.
2. Trajectories of A may converge with arbitrarily high probability to spurious attractors that contain no

critical point of Φ.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 33/ 86

Minimax is more difficult than just optimization [39]
◦ Internally chain-transitive (ICT) sets characterize the convergence of dynamical systems [11].

I For optimization, {attracting ICT} ≡ {solutions}

I For minimax, {attracting ICT} ≡ {solutions} ∪ {spurious sets}

◦ “Almost” bilinear , bilinear:

Φ(x, y) = xy + εφ(x), φ(x) =
1
2
x2 −

1
4
x4

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Adam
ExtraAdam
Unstable critical point

4

3

2

1

0

1

2

3

4

◦ The “forsaken” solutions:

Φ(y, x) = y(x−0.5)+φ(y)−φ(x), φ(u) =
1
4
u2−

1
2
u4+

1
6
u6

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Adam
ExtraAdam
Stable critical point 6.4

4.8

3.2

1.6

0.0

1.6

3.2

4.8

6.4

8.0

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 34/ 86

Minimax is more difficult than just optimization [39]
◦ Internally chain-transitive (ICT) sets characterize the convergence of dynamical systems [11].

I For optimization, {attracting ICT} ≡ {solutions}

I For minimax, {attracting ICT} ≡ {solutions} ∪ {spurious sets}

◦ “Almost” bilinear , bilinear:

Φ(x, y) = xy + εφ(x), φ(x) =
1
2
x2 −

1
4
x4

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Adam
ExtraAdam
Unstable critical point

4

3

2

1

0

1

2

3

4

◦ The “forsaken” solutions:

Φ(y, x) = y(x−0.5)+φ(y)−φ(x), φ(u) =
1
4
u2−

1
2
u4+

1
6
u6

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Adam
ExtraAdam
Stable critical point 6.4

4.8

3.2

1.6

0.0

1.6

3.2

4.8

6.4

8.0

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 34/ 86

When do the algorithms converge?

Assumption (weak Minty variational inequality)
For some ρ ∈ R, weak MVI implies

〈V (z), z− z?〉 > ρ‖V (z)‖2, for all z ∈ Rn. (9)

◦ A variant EG+ converges when ρ > − 1
8L

I Diakonikolas, Daskalakis, Jordan, AISTATS 2021.
◦ It still cannot handle the examples of [39].

z⋆z

−V(z)

Figure: The operator V (z) is allowed to point away from
the solution by some amount when ρ is negative.

◦ Complete picture under weak MVI (ICLR’22 and ’23)
I Pethick, Lalafat, Patrinos, Fercoq, and Cevher.
I constrained and regularized settings with ρ > − 1

2L
I matching lower bounds
I stochastic variants handling the examples of [39]
I adaptive variants handling the examples of [39]

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 35/ 86

Solving stochastic weak MVIs without increasing batch size

z̄k = zk − γV (zk) (EG+)

zk+1 = zk − αγV (z̄k)

z̄k = zk − βkγV (zk, ζk) (SEG)

zk+1 = zk − αkγV (z̄k, ζ̄k)

z̄k = zk − γV (zk, ζk) (SEG+)

zk+1 = zk − αkγV (z̄k, ζ̄k)

H(z, ζ) def= z− γV (z, ζ)

z̄k = H(zk, ζk) + (1− αk)
(

z̄k−1 −H(zk−1, ζk)
)

zk+1 = zk − αkγV (z̄k, ζ̄k)

◦ Extragradient+
I the smaller α ∈ (0, 1), the better [20]
I ρ > − 1

2L [72]

◦ Stochastic extragradient
I βk > αk: two time scale
I βk ∝ 1/k and αk ∝ 1/k for ρ = 0 [40]

◦ Stochastic extragradient+
I converges for affine V , ρ > (1− αk)γ/2 [71]
I may not converge for monotone setting

◦ Bias corrected stochastic extragradient+ [71]
I a.s. convergence with ρ > − 1

2L w/αk → 0
I alternation allows even bigger step-sizes

I constrained and regularized settings w/ prox

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 36/ 86

Solving stochastic weak MVIs without increasing batch size

z̄k = zk − γV (zk) (EG+)

zk+1 = zk − αγV (z̄k)

z̄k = zk − βkγV (zk, ζk) (SEG)

zk+1 = zk − αkγV (z̄k, ζ̄k)

z̄k = zk − γV (zk, ζk) (SEG+)

zk+1 = zk − αkγV (z̄k, ζ̄k)

H(z, ζ) def= z− γV (z, ζ)

z̄k = H(zk, ζk) + (1− αk)
(

z̄k−1 −H(zk−1, ζk)
)

zk+1 = zk − αkγV (z̄k, ζ̄k)

◦ Extragradient+
I the smaller α ∈ (0, 1), the better [20]
I ρ > − 1

2L [72]

◦ Stochastic extragradient
I βk > αk: two time scale
I βk ∝ 1/k and αk ∝ 1/k for ρ = 0 [40]

◦ Stochastic extragradient+
I converges for affine V , ρ > (1− αk)γ/2 [71]
I may not converge for monotone setting

◦ Bias corrected stochastic extragradient+ [71]
I a.s. convergence with ρ > − 1

2L w/αk → 0
I alternation allows even bigger step-sizes

I constrained and regularized settings w/ prox

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 36/ 86

Solving stochastic weak MVIs without increasing batch size

z̄k = zk − γV (zk) (EG+)

zk+1 = zk − αγV (z̄k)

z̄k = zk − βkγV (zk, ζk) (SEG)

zk+1 = zk − αkγV (z̄k, ζ̄k)

z̄k = zk − γV (zk, ζk) (SEG+)

zk+1 = zk − αkγV (z̄k, ζ̄k)

H(z, ζ) def= z− γV (z, ζ)

z̄k = H(zk, ζk) + (1− αk)
(

z̄k−1 −H(zk−1, ζk)
)

zk+1 = zk − αkγV (z̄k, ζ̄k)

◦ Extragradient+
I the smaller α ∈ (0, 1), the better [20]
I ρ > − 1

2L [72]

◦ Stochastic extragradient
I βk > αk: two time scale
I βk ∝ 1/k and αk ∝ 1/k for ρ = 0 [40]

◦ Stochastic extragradient+
I converges for affine V , ρ > (1− αk)γ/2 [71]
I may not converge for monotone setting

◦ Bias corrected stochastic extragradient+ [71]
I a.s. convergence with ρ > − 1

2L w/αk → 0
I alternation allows even bigger step-sizes

I constrained and regularized settings w/ prox

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 36/ 86

Solving stochastic weak MVIs without increasing batch size

z̄k = zk − γV (zk) (EG+)

zk+1 = zk − αγV (z̄k)

z̄k = zk − βkγV (zk, ζk) (SEG)

zk+1 = zk − αkγV (z̄k, ζ̄k)

z̄k = zk − γV (zk, ζk) (SEG+)

zk+1 = zk − αkγV (z̄k, ζ̄k)

H(z, ζ) def= z− γV (z, ζ)

z̄k = H(zk, ζk) + (1− αk)
(

z̄k−1 −H(zk−1, ζk)
)

zk+1 = zk − αkγV (z̄k, ζ̄k)

◦ Extragradient+
I the smaller α ∈ (0, 1), the better [20]
I ρ > − 1

2L [72]

◦ Stochastic extragradient
I βk > αk: two time scale
I βk ∝ 1/k and αk ∝ 1/k for ρ = 0 [40]

◦ Stochastic extragradient+
I converges for affine V , ρ > (1− αk)γ/2 [71]
I may not converge for monotone setting

◦ Bias corrected stochastic extragradient+ [71]
I a.s. convergence with ρ > − 1

2L w/αk → 0
I alternation allows even bigger step-sizes

I constrained and regularized settings w/ prox

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 36/ 86

Solving stochastic weak MVIs without increasing batch size

z̄k = zk − γV (zk) (EG+)

zk+1 = zk − αγV (z̄k)

z̄k = zk − βkγV (zk, ζk) (SEG)

zk+1 = zk − αkγV (z̄k, ζ̄k)

z̄k = zk − γV (zk, ζk) (SEG+)

zk+1 = zk − αkγV (z̄k, ζ̄k)

H(z, ζ) def= z− γV (z, ζ)

z̄k = H(zk, ζk) + (1− αk)
(

z̄k−1 −H(zk−1, ζk)
)

zk+1 = zk − αkγV (z̄k, ζ̄k)

◦ Extragradient+
I the smaller α ∈ (0, 1), the better [20]
I ρ > − 1

2L [72]

◦ Stochastic extragradient
I βk > αk: two time scale
I βk ∝ 1/k and αk ∝ 1/k for ρ = 0 [40]

◦ Stochastic extragradient+
I converges for affine V , ρ > (1− αk)γ/2 [71]
I may not converge for monotone setting

◦ Bias corrected stochastic extragradient+ [71]
I a.s. convergence with ρ > − 1

2L w/αk → 0
I alternation allows even bigger step-sizes
I constrained and regularized settings w/ prox

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 36/ 86

GANs with SEG+

Figure: A performance comparison of GAN training by Adam, EG with stochastic gradients, and SEG+.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 37/ 86

An alternative proposal: From pure to mixed Nash equilibrium (NE)

◦ Rethinking minimax problem as pure strategy game formulation

min
x∈X

max
y∈Y

Φ(x,y)

◦ A corresponding mixed strategy formulation

min
p∈M(X)

max
q∈M(Y)

Ex∼pEy∼q [Φ(x,y)]

I M(Z) B {all randomized strategies on Z}

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 38/ 86

GAN training as infinite dimensional matrix games
◦ A different way of looking at GAN objective

I 〈p〉h B
∫
h dp for a measure p and function h (Riesz representation)

I the linear operator G and its adjoint G†:

(Gq)(x) B Ey∼q [Φ(x,y)]

(G†p)(y) B Ex∼p [Φ(x,y)] ,

◦ Mixed NE formulation ' finite two-player games

min
p∈M(X)

max
q∈M(Y)

Ex∼pEy∼q [Φ(x,y)]

m
min

p∈M(X)
max

q∈M(Y)
〈p〉Gq

I If X and Y are finite ⇒ mirror descent
I There is a way to solve this infinite dimensional problem: Mirror descent + Langevin dynamics [38]

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 39/ 86

Escaping traps with the mixed-NE concept1

max
ω∈[−2,2]

min
θ∈[−2,2]

−ω2θ2 + ωθ

0 20 40 60 80 100
t

0.00

0.05

0.10

0.15

0.20

0.25

f(
,

)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

GAD
NE

EG
= 0.5

MixedNE-LD
Start

1K. Parameswaran, Y-T. Huang, Y-P. Hsieh, P. Rolland, C. Shi, V. Cevher, “Robust Reinforcement Learning via Adversarial Training with Langevin Dynamics" NeurIPS 2020.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 40/ 86

Take home messages

◦ Even the simplified view of robust & adversarial ML is challenging

◦ min-max-type has spurious attractors with no equivalent concept in min-type

◦ Not all step-size schedules are considered in our work: Possible to “converge” under some settings

◦ Other successful attempts1 consider “mixed Nash” concepts2

◦ Promising new direction: Higher-order adaptive methods3

1Y-P. Hsieh, C. Liu, and V. Cevher, “Finding mixed Nash equilibria of generative adversarial networks,” International Conference on Machine Learning, 2019.
2K. Parameswaran, Y-T. Huang, Y-P. Hsieh, P. Rolland, C. Shi, V. Cevher, “Robust Reinforcement Learning via Adversarial Training with Langevin Dynamics,” NeurIPS, 2020.
3K. Antonakopoulos, A. Kavis, and V. Cevher, “A First Approach to Universal Second-Order Acceleration for Convex Minimization,” NeurIPS, 2022.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 41/ 86

Take home messages

◦ Even the simplified view of robust & adversarial ML is challenging

◦ min-max-type has spurious attractors with no equivalent concept in min-type

◦ Not all step-size schedules are considered in our work: Possible to “converge” under some settings

◦ Other successful attempts1 consider “mixed Nash” concepts2

◦ Promising new direction: Higher-order adaptive methods3

1Y-P. Hsieh, C. Liu, and V. Cevher, “Finding mixed Nash equilibria of generative adversarial networks,” International Conference on Machine Learning, 2019.
2K. Parameswaran, Y-T. Huang, Y-P. Hsieh, P. Rolland, C. Shi, V. Cevher, “Robust Reinforcement Learning via Adversarial Training with Langevin Dynamics,” NeurIPS, 2020.
3K. Antonakopoulos, A. Kavis, and V. Cevher, “A First Approach to Universal Second-Order Acceleration for Convex Minimization,” NeurIPS, 2022.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 41/ 86

The mystery in deep learning

A gap between theory and practice
◦ In practice, simple algorithms like SGD can
train neural networks to zero error and
achieve low test error.
◦ This happens even for large and complex
neural network architectures.
◦ Complexity measures like the Rademacher
complexity suggest the opposite behaviour
(overfitting)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 42/ 86

Q4: Can SGD converge to global minimizers?

◦ A few phenomena about neural networks [85]:
I Deep neural networks can fit random labels
I First-order methods can find global minimizers

Figure: DNN Training curves on CIFAR10, from [85]

◦ Overparametrization can explain these mysteries!

Overparametrization
Number of parameters � number of training data.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 43/ 86

Q4: Can SGD converge to global minimizers?

◦ A few phenomena about neural networks [85]:
I Deep neural networks can fit random labels
I First-order methods can find global minimizers

Figure: DNN Training curves on CIFAR10, from [85]

◦ Overparametrization can explain these mysteries!

Overparametrization
Number of parameters � number of training data.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 43/ 86

GD finds global minimizers of overparametrized networks

hx(a) :=

[
X2

] activationy
σ

weight
↓[

X1

] input
↓[
a

]
+

bias
↓[
µ1

]
︸ ︷︷ ︸

hidden layer = learned features

+

bias
↓[
µ2

]

Theorem (Linear convergence of Gradient Descent [22])
I f(a; X1,X2): 1-hidden-layer network with width m,hidden layer weights X1, output layer weights X2 and

ReLU activation.
I m = Ω(n

6

δ3
) where n =number of samples.

I X0
1 is initialized with a normal distribution, X0

2 ∼ Unif[−1, 1]m.
I Stepsize η = O(n−2).

With probability at least 1− δ, for the empirical risk Rn will converge to zero with a geometric rate of (1− η).

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 44/ 86

Overparametrization is an active area of research

Reference Number of parameters Depth d Result

[41] Ω̃(n) 1, 2 Existence of zero error

[84, 70] Ω̃(n) Any d Existence of zero error

[53] Ω̃(poly(n)) 1 (S)GD global convergence

[22] Ω̃(n6) 1 (S)GD global convergence

[1, 89] Ω̃(poly(n, d)) Any d (S)GD global convergence

[21] Ω̃(n82O(d)) Any d (S)GD global convergence

[90] Ω̃(n8d12) Any d (S)GD global convergence

[46] Ω̃(n) (Training last layer) Any d (S)GD global convergence

[77] Ω̃(n
3
2) (Training all layers) 1 (S)GD global convergence

Table: Summary of results on overparametrization. Minimum number of parameters required as a function of data size n and
depth d. The result is classified either as Existence i.e., there exists a neural network achieving zero error on the data, or (S)GD
global convergence i.e., (S)GD converges to zero training error, a much stronger condition.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 45/ 86

It is time for the short break!

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 46/ 86

The role of over-parameterization in machine learning

Deep learning theory
Motivation: initialization

Over-
parameterization The role of over-parameterization

Good,
bad, ugly Robustness and generalization

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 47/ 86

Over-parameterization: more parameters than training data

MLP:
<< 1 million
parameters

ResNet-152:
60.3 million
parameters

Transformer:
340 million
parameters

GPT-2:
1.5 billion

parameters

GPT-3, Chat-GPT:
175 billion
parameters

before 2012 2017 2019 202020152012

AlexNet

2022

GPT-4

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 48/ 86

Over-parameterization: more parameters than training data

Figure: Larger models make increasingly efficient use of in-context information: source from Open AI.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 48/ 86

https://syncedreview.com/2020/05/29/openai-unveils-175-billion-parameter-gpt-3-language-model/

Recall DNNs: the good in fitting ...

Figure: DNN Training curves on CIFAR10, from [85]

◦ A gap between theory and practice:
I DNNs can fit random labels
I SGD: zero training error and low test error

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 49/ 86

Recall DNNs: the bad in robustness...

(a) Invisibility [81] (b) Stop sign classified as 45 mph sign [26]

the ugly in over-parameterization?

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 50/ 86

Recall DNNs: the bad in robustness...

(a) Invisibility [81] (b) Stop sign classified as 45 mph sign [26]

the ugly in over-parameterization?

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 50/ 86

A toy example: curve fitting
d 19

save

WARNING:matplotlib.legend:No handles with labels found to put in legend.
norm: 69.17524431176956

<function __main__.run(d, save=False)>

norm: 77.56023507806226

run(d=20)

norm: 1.4191230288785373

run(d=3)

run(d=1000)

 0 秒 完成时间：10:48
Colab 付费产品 - 在此处取消合同

norm: 1.393267492538217

norm: 0.8353271714048255

run(d=1)

(b) under-fitting

d 19

save

norm: 176.96526383385023

<function __main__.run(d, save=False)>

norm: 77.56023507806226

run(d=20)

norm: 1.4191230288785373

run(d=3)

run(d=1000)

(c) sweet spot

d 20

save

WARNING:matplotlib.legend:No handles with labels found to put in legend.
norm: 241.08926589939713

<function __main__.run(d, save=False)>

norm: 77.56023507806226

run(d=20)

norm: 1.4191230288785373

run(d=3)

run(d=1000)

(d) overfitting

 0 秒 完成时间：10:48
Colab 付费产品 - 在此处取消合同

norm: 1.393267492538217

norm: 0.8353271714048255

run(d=1)
(e) benign overfitting

Figure: Test performance on curve fitting: source from Open AI.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 51/ 86

https://windowsontheory.org/2019/12/05/deep-double-descent/

A toy example: curve fitting

 0 秒 完成时间：10:48
Colab 付费产品 - 在此处取消合同

norm: 1.393267492538217

norm: 0.8353271714048255

run(d=1)

(a) under-fitting

d 19

save

norm: 176.96526383385023

<function __main__.run(d, save=False)>

norm: 77.56023507806226

run(d=20)

norm: 1.4191230288785373

run(d=3)

run(d=1000)

(b) sweet spot

d 20

save

WARNING:matplotlib.legend:No handles with labels found to put in legend.
norm: 241.08926589939713

<function __main__.run(d, save=False)>

norm: 77.56023507806226

run(d=20)

norm: 1.4191230288785373

run(d=3)

run(d=1000)

(c) overfitting

 0 秒 完成时间：10:48
Colab 付费产品 - 在此处取消合同

norm: 1.393267492538217

norm: 0.8353271714048255

run(d=1)
(d) benign overfitting

Figure: Test performance on curve fitting: source from Open AI.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 51/ 86

https://windowsontheory.org/2019/12/05/deep-double-descent/

A toy example: curve fitting

 0 秒 完成时间：10:48
Colab 付费产品 - 在此处取消合同

norm: 1.393267492538217

norm: 0.8353271714048255

run(d=1)

(a) under-fitting

d 19

save

norm: 176.96526383385023

<function __main__.run(d, save=False)>

norm: 77.56023507806226

run(d=20)

norm: 1.4191230288785373

run(d=3)

run(d=1000)

(b) sweet spot

d 20

save

WARNING:matplotlib.legend:No handles with labels found to put in legend.
norm: 241.08926589939713

<function __main__.run(d, save=False)>

norm: 77.56023507806226

run(d=20)

norm: 1.4191230288785373

run(d=3)

run(d=1000)

(c) overfitting

 0 秒 完成时间：10:48
Colab 付费产品 - 在此处取消合同

norm: 1.393267492538217

norm: 0.8353271714048255

run(d=1)
(d) benign overfitting

Figure: Test performance on curve fitting: source from Open AI.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 51/ 86

https://windowsontheory.org/2019/12/05/deep-double-descent/

A toy example: curve fitting

 0 秒 完成时间：10:48
Colab 付费产品 - 在此处取消合同

norm: 1.393267492538217

norm: 0.8353271714048255

run(d=1)

(a) under-fitting

d 19

save

norm: 176.96526383385023

<function __main__.run(d, save=False)>

norm: 77.56023507806226

run(d=20)

norm: 1.4191230288785373

run(d=3)

run(d=1000)

(b) sweet spot

d 20

save

WARNING:matplotlib.legend:No handles with labels found to put in legend.
norm: 241.08926589939713

<function __main__.run(d, save=False)>

norm: 77.56023507806226

run(d=20)

norm: 1.4191230288785373

run(d=3)

run(d=1000)

(c) overfitting

 0 秒 完成时间：10:48
Colab 付费产品 - 在此处取消合同

norm: 1.393267492538217

norm: 0.8353271714048255

run(d=1)
(d) benign overfitting

Figure: Test performance on curve fitting: source from Open AI.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 51/ 86

https://windowsontheory.org/2019/12/05/deep-double-descent/

A toy example: curve fitting

 0 秒 完成时间：10:48
Colab 付费产品 - 在此处取消合同

norm: 1.393267492538217

norm: 0.8353271714048255

run(d=1)

(a) under-fitting

d 19

save

norm: 176.96526383385023

<function __main__.run(d, save=False)>

norm: 77.56023507806226

run(d=20)

norm: 1.4191230288785373

run(d=3)

run(d=1000)

(b) sweet spot

d 20

save

WARNING:matplotlib.legend:No handles with labels found to put in legend.
norm: 241.08926589939713

<function __main__.run(d, save=False)>

norm: 77.56023507806226

run(d=20)

norm: 1.4191230288785373

run(d=3)

run(d=1000)

(c) overfitting

 0 秒 完成时间：10:48
Colab 付费产品 - 在此处取消合同

norm: 1.393267492538217

norm: 0.8353271714048255

run(d=1)
(d) benign overfitting

Figure: Test performance on curve fitting: source from Open AI.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 51/ 86

https://windowsontheory.org/2019/12/05/deep-double-descent/

Benign overfitting and double descent

◦ A bit more on benign overfitting [5, 15, 27]:
I model is very complex
I perfectly fit noisy data and generalize well

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd→C of the form

h(x)=

N∑

k=1

akφ(x ; vk) where φ(x ; v):=e
√−1〈vk ,x〉,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N →∞, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H∞. While it is possible to directly use
H∞ [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd ×R, we find the predictor hn,N ∈
HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

∑n
i=1(h(xi)− yi)

2 over all functions h ∈HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN)
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm ‖h‖H∞ , which is generally
difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

Figure: classical learning theory vs. double descent: source from [8].

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 52/ 86

Benign overfitting and double descent

◦ A bit more on benign overfitting [5, 15, 27]:
I model is very complex
I perfectly fit noisy data and generalize well

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd→C of the form

h(x)=

N∑

k=1

akφ(x ; vk) where φ(x ; v):=e
√−1〈vk ,x〉,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N →∞, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H∞. While it is possible to directly use
H∞ [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd ×R, we find the predictor hn,N ∈
HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

∑n
i=1(h(xi)− yi)

2 over all functions h ∈HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN)
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm ‖h‖H∞ , which is generally
difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

Figure: classical learning theory vs. double descent: source from [8].

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 52/ 86

Machine learning algorithms

complex in low dimensions simple in higher dimensions

feature mapping

separating
hyperplane

linear non‐separable linear separable

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 53/ 86

Feature mapping: from kernel methods to neural networks

Neural tangent kernel (NTK) [44]

Kernel Methods Neural Networks

◦ data-independent ◦ data-dependent
feature mapping

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 54/ 86

Feature mapping: from kernel methods to neural networks

Neural tangent kernel (NTK) [44]

Kernel Methods Neural Networks

◦ data-independent ◦ data-dependent
feature mapping

k(a,a′) = 〈φ(a), φ(a′)〉H

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 54/ 86

Function space: from kernel methods to neural networks

Neural tagent kernel (NTK)

Kernel Methods Neural Networks

reproducing kernel Hilbert space (RKHS)

e.g., Hölder space, Besov space

Curse of dimensionality [3, 83, 13]

efficiently approximate non-smooth functions?

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 55/ 86

NN architecture

h(0)(a) = a,

h(l)(a) =

activationy
σ

weight
↓[

Xl

] input features
↓[

h(l−1)(a)

],
hx(a) = h(L)(a) =

1
α
σ
(
XLh

(L−1)(a)
)
, x := [X1,X2, · · · ,XL] .

(L-Layer NN)

◦ Elements of NN architectures we will discuss in the sequel:
I Parameters: X1 ∈ Rm×p, XL ∈ R1×m, Xl ∈ Rm×m for l = 2, 3, · · · , L− 1 (weights).

I Initialization: X1 ∼ N (0, β2
1), XL ∼ N (0, β2

L), Xl ∼ N (0, β2) for l = 2, 3, · · · , L− 1 (weights).

I Activation function ReLU: σ(·) = max(·, 0) : R→ R.

I Without loss of generality, we will avoid the bias variables in the sequel.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 56/ 86

Summary on initialization

Table: Some commonly used initializations in neural networks.

Initialization name β2
1 β2 β2

L α

LeCun [50] 1
p

1
m

1
m

1

He [37] 2
p

2
m

2
m

1

NTK [1] 2
m

2
m

1 1

Xavier [31] 2
m+p

1
m

2
m+1 1

Mean-field [61] 1 1 1 m

E et al. [25] 1 1 β2
c 1

Figure: Phase diagram of two-layer ReLU NNs at infinite-width
limit in [56].

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 57/ 86

Lazy-training

Definition (Lazy-training (Linear) regime [56])
Define an L-layer fully-connected ReLU NN via (L-Layer NN). After training time t, as m→∞, if the
following condition holds

sup
t∈[0,+∞)

‖Xl(t)−Xl(0)‖2
‖Xl(0)‖2

→ 0, ∀l ∈ [L] .

then the NN training dynamics falls into the lazy-training regime.

Remarks: ◦ In this regime, training h and h0 is equivalent if taking Taylor expansion.
◦ Which conditions allow for lazy training to occur ?

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 58/ 86

Lazy training: a consequence of overparametrization or scaling?

Theorem (Lazy training for two-layer ReLU networks [16], modified version)
Two layer networks h(a, {x,v}) : a 7→ α(m)

∑m

j=1 vjReLU(x>j a) with Gaussian initialization vi,xi ∼ N (0, β2)
will fall within the lazy regime as long as

lim
m→∞

mβ =∞ .

Remarks: ◦ The loss changes a lot but the neural network output changes little.
◦ Other conditions for deep neural networks can be found here [16, 7].

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 59/ 86

Lazy training regime: visualization

FNN,m =

{
hm(a; {x,v}) =

m∑
i=1

vi max (〈xi,a〉 , 0) : vi ∈ R,xi ∈ Rd
}

X(0) X(t)

lazy training regime

Lecun, He

NTK

supt∈[0,+∞)

∥
Xl(t)−Xl(0)

∥
F∥

Xl(0)
∥

F
→ 0

Figure: Training dynamics of two-layer ReLU NNs under different initializations [44, 17, 57].

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 60/ 86

Lazy training regime: visualization

FNN,m =

{
hm(a; {x,v}) =

m∑
i=1

vi max (〈xi,a〉 , 0) : vi ∈ R,xi ∈ Rd
}

lazy training ratio κ :=

∑L

l=1 ‖Xl(t)−Xl(0)‖F∑L

l=1 ‖Xl(0)‖F

0 10 20 30 40 50
Epochs

0.004

0.005

0.006

0.007
L=2, Lazy

24 26 28 210 212 214

Width
0

0.01

0.02

0.03

0.04
Lazy

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 60/ 86

Non-lazy training regime: visualization

X(0)

mean field regime

Xavier
X(t)

supt∈[0,+∞)

∥
Xl(t)−Xl(0)

∥
F∥

Xl(0)
∥

F
→ 1

Figure: Training dynamics of two-layer ReLU NNs under different initializations [44, 17, 57].

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 61/ 86

Non-lazy training regime: visualization

X(0)

non-lazy training regime

X(t)

∞

supt∈[0,+∞)

∥
Xl(t)−Xl(0)

∥
F∥

Xl(0)
∥

F
→ ∞

Figure: Training dynamics of two-layer ReLU NNs under different initializations [44, 17, 57].

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 61/ 86

Our understanding [Zhu, Liu, Chrysos, Cevher, NeurIPS (2022)]

Helps! [12] Hurts! [80, 42]

Definition (Lipschitz constant with respect to the input)
The Lipschitz constant of a differentiable h is L = supa∈Rp ‖∇ahx(a)‖?, where ‖·‖? is the dual norm.

Remarks: ◦ Lipschitz constant can be used to describe the worst-case robustness.

◦ Lipschitz constant theoretically correlates with the generalization ability of NN classifiers [4].

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 62/ 86

Our understanding [Zhu, Liu, Chrysos, Cevher, NeurIPS (2022)]

Helps! [12] Hurts! [80, 42]

Definition (Lipschitz constant with respect to the input)
The Lipschitz constant of a differentiable h is L = supa∈Rp ‖∇ahx(a)‖?, where ‖·‖? is the dual norm.

Remarks: ◦ Lipschitz constant can be used to describe the worst-case robustness.

◦ Lipschitz constant theoretically correlates with the generalization ability of NN classifiers [4].

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 62/ 86

Robustness in deep learning: metrics

◦ Conflicting messages that can change due to
I initialization (e.g., lazy training, non-lazy training)
I architecture (e.g., width, depth)

Definition (perturbation stability [87])
The perturbation stability of a ReLU DNN hx(a) is

P(h, ε) = Ea,â,x
∥∥∇ahx(a)>(a − â)

∥∥
2
, ∀a ∼ DA, â ∼ Unif(B(ε,a)) ,

where ε is the perturbation radius.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 63/ 86

Robustness in deep learning: metrics

◦ Conflicting messages that can change due to
I initialization (e.g., lazy training, non-lazy training)
I architecture (e.g., width, depth)

Definition (perturbation stability [87]: lazy training regime)
The perturbation stability of a ReLU DNN hx(a) is

P(h, ε) = Ea,â,x(0)
∥∥∇ahx(a)>(a − â)

∥∥
2
, ∀a ∼ DA, â ∼ Unif(B(ε,a)) ,

where ε is the perturbation radius.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 63/ 86

Robustness in deep learning: metrics

◦ Conflicting messages that can change due to
I initialization (e.g., lazy training, non-lazy training)
I architecture (e.g., width, depth)

Definition (perturbation stability [87]: non-lazy training regime)
The perturbation stability of a ReLU DNN hx(a) is

P(h, ε) = Ea,â
∥∥∇ahx(a)>(a − â)

∥∥
2
, ∀a ∼ DA, â ∼ Unif(B(ε,a)) ,

where ε is the perturbation radius.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 63/ 86

Main results (Lazy-training regime)

Theorem [87]: · . Func(m,L, β)
Assumption Initialization Our bound for P(f, ε)/ε Trend of width m [1] Trend of depth L [1]

‖a‖2 = 1

Lecun initialization
(√

L3m
p

e−m/L
3

+
√

1
p

)
(
√

2
2)L−2 ↗↘ ↘

He initialization
√

L3m
p

e−m/L
3

+
√

1
p

↗↘ ↗

NTK initialization
√

L3m
p

e−m/L
3

+ 1 ↗↘ ↗

[1] The larger perturbation stability means worse average robustness.

Remarks: ◦ width helps robustness in the over-parameterized regime
◦ depth helps robustness in Lecun initialization but hurts robustness in He/NTK initialization

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 64/ 86

Experiments: lazy training experiment for FCNN

Metrics Ours (NTK initialization) [80] [42]

P(f , ε)/ε
√

L3m
p

e−m/L
3

+ 1 L2m1/3
√

logm +
√
mL 2

3L−5
2
√
L

24 25 26 27 28 29 210 211 212 213 214

Width
0.0

0.1

0.2

0.3

0.4

0.5
L=2
L=6
L=10

(a) LeCun initialization

24 25 26 27 28 29 210 211 212 213 214

Width
0.0

0.2

0.4

0.6

0.8

1.0

St
ab

ilit
y

L=2
L=6
L=10

(b) He initialization

24 25 26 27 28 29 210 211

Width
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

St
ab

ilit
y

L=10
L=6
L=2

(c) NTK initialization

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 65/ 86

Experiments: lazy training experiment for CNN

24 25 26 27 28 29 210 211 212

Width

4

6

8

10

12

St
ab

ilit
y

L=4

(a) L = 4

24 25 26 27 28 29 210 211 212

Width
20
25
30
35
40
45
50
55
60 L=6

(b) L = 6

24 25 26 27 28 29 210 211 212

Width

150

200

250

300

350

400

St
ab

ilit
y

L=8

(c) L = 8

24 25 26 27 28 29 210 211 212

Width

750
1000
1250
1500
1750
2000
2250
2500
2750

L=10

(d) L = 10

Figure: Relationship between the perturbation stability and width of CNN under He initialization for different depths of
L = 4, 6, 8 and 10. More experimental results on ResNet can be found in [87].

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 66/ 86

Main results (Non-lazy training regime)

A sufficient condition for DNNs
For large enough m and m� p, w.h.p, DNNs fall into non-lazy training regime if α� (m3/2

∑L

i=1 βi)
L.

Remarks: ◦ L = 2, α = 1, β1 = β2 = β ∼ 1
mc

with c > 1.5

Theorem (non-lazy training regime for two-layer NNs)
Under this setting with m� n2 and standard assumptions, then

perturbation stability ≤ Õ
(

n

mc+1.5

)
, whp.

Remarks: ◦ width helps robustness in the over-parameterized regime in both lazy/non-lazy training regime

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 67/ 86

Main results (Non-lazy training regime)

A sufficient condition for DNNs
For large enough m and m� p, w.h.p, DNNs fall into non-lazy training regime if α� (m3/2

∑L

i=1 βi)
L.

Remarks: ◦ L = 2, α = 1, β1 = β2 = β ∼ 1
mc

with c > 1.5

Theorem (non-lazy training regime for two-layer NNs)
Under this setting with m� n2 and standard assumptions, then

perturbation stability ≤ Õ
(

n

mc+1.5

)
, whp.

Remarks: ◦ width helps robustness in the over-parameterized regime in both lazy/non-lazy training regime

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 67/ 86

Experiment: Non-lazy training regime

lazy training ratio κ :=

∑L

l=1 ‖Xl(t)−Xl(0)‖F∑L

l=1 ‖Xl(0)‖F

0 10 20 30 40 50
Epochs

0

2

4

6

8

L=2, Non-lazy

24 25 26 27 28 29 210 211 212 213 214

Width
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Lazy training
Non lazy training

3 4
0.05

0.10

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 68/ 86

Why robust generalization is difficult?

Figure: Robust classifiers exist if the perturbation
is less than the separation: source from [82].

perturbation ε Train-Train Test-Train
MNIST 0.1 0.737 0.812
CIFAR-10 0.031 0.212 0.220
SVHN 0.031 0.094 0.110
ResImageNet 0.005 0.180 0.224

Table: Separation of real data under typical perturbation radii. [82]

Theorem (Curse of dimensionality [52])
For a ReLU DNN with m parameter, for any ε-separated set A, B ⊂ [0, 1]p, it requires m = Ω(ε−p) to classify
A and B.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 69/ 86

Recall empirical risk minimization...
◦ Goal of ML: find a “good” estimator h approximating the lowest expected risk

inf
h∈H

R(h), R(h) := E(a,b)∼ρL(h(a), b),

given training data {(ai, bi)}ni=1

h? = arg min
h∈H

Rn(h) :=
1
n

n∑
i=1

L(hx(ai), bi)

I generalization error:

R(h?)−Rn(h?) = O(n−α), for some α > 0, whp.
I uniform convergence: suph∈H |R(h)−Rn(h)|

R(h?) ≤
1
n

n∑
i=1

L(h?x(ai), bi) +O

(√
c?

n

)
, whp.

uniform laws of large numbers + capacity control

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 70/ 86

Recall empirical risk minimization...
◦ Goal of ML: find a “good” estimator h approximating the lowest expected risk

inf
h∈H

R(h), R(h) := E(a,b)∼ρL(h(a), b),

given training data {(ai, bi)}ni=1

h? = arg min
h∈H

Rn(h) :=
1
n

n∑
i=1

L(hx(ai), bi)

I generalization error:

R(h?)−Rn(h?) = O(n−α), for some α > 0, whp.

I uniform convergence: suph∈H |R(h)−Rn(h)|

R(h?) ≤
1
n

n∑
i=1

L(h?x(ai), bi) +O

(√
c?

n

)
, whp.

uniform laws of large numbers + capacity control

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 70/ 86

Recall empirical risk minimization...
◦ Goal of ML: find a “good” estimator h approximating the lowest expected risk

inf
h∈H

R(h), R(h) := E(a,b)∼ρL(h(a), b),

given training data {(ai, bi)}ni=1

h? = arg min
h∈H

Rn(h) :=
1
n

n∑
i=1

L(hx(ai), bi)

I generalization error:

R(h?)−Rn(h?) = O(n−α), for some α > 0, whp.
I uniform convergence: suph∈H |R(h)−Rn(h)|

R(h?) ≤
1
n

n∑
i=1

L(h?x(ai), bi) +O

(√
c?

n

)
, whp.

uniform laws of large numbers + capacity control

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 70/ 86

Recall empirical risk minimization...
◦ Goal of ML: find a “good” estimator h approximating the lowest expected risk

inf
h∈H

R(h), R(h) := E(a,b)∼ρL(h(a), b),

given training data {(ai, bi)}ni=1

h? = arg min
h∈H

Rn(h) :=
1
n

n∑
i=1

L(hx(ai), bi)

I generalization error:

R(h?)−Rn(h?) = O(n−α), for some α > 0, whp.
I uniform convergence: suph∈H |R(h)−Rn(h)|

R(h?) ≤
1
n

n∑
i=1

L(h?x(ai), bi) +O

(√
c?

n

)
, whp.

uniform laws of large numbers + capacity control

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 70/ 86

Rademacher complexity

Definition (Empirical Rademacher Complexity [6])
Let H be a class of functions of the form h : Rp → R. The empirical Rademacher complexity of H with respect
to A is defined as:

RA(H) B Ev sup
h∈H

1
n

n∑
i=1

〈vi, h(ai)〉 , Pr(vi = 1) = Pr(vi = −1) = 1/2 .

Remark: ◦ RA(H) measures how well we fit random (±1) with the output of an element of H on the set A.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 71/ 86

Visualizing Rademacher complexity

(a) High Rademacher Complexity (b) Large Generalization error
(memorization)

(c) Low Rademacher Complexity (d) Low Generalization error

Figure: Rademacher complexity and Generalization error

sup
h∈H

|R(h)−Rn(h)| . RA(H) +O
(1
√
n

)
, whp.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 72/ 86

Visualizing Rademacher complexity

(a) High Rademacher Complexity (b) Large Generalization error
(memorization)

(c) Low Rademacher Complexity (d) Low Generalization error

Figure: Rademacher complexity and Generalization error

sup
h∈H

|R(h)−Rn(h)| . RA(H) +O
(1
√
n

)
, whp.

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 72/ 86

Why uniform convergence fails in deep learning?

R(h?) ≤
1
n

n∑
i=1

L(h?x(ai), bi)︸ ︷︷ ︸
=0

+O

(√
c?

n

)
, whp.

Figure: DNN Training curves on CIFAR10: source from [85]

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 73/ 86

Why uniform convergence fails in deep learning?

R(h?) ≤
1
n

n∑
i=1

L(h?x(ai), bi)︸ ︷︷ ︸
=0

+O

(√
c?

n

)
, whp.

te
st

 c
la

ss
ifi

ca
tio

n
er

ro
r (

%
)

added label noise (%)

Figure: Interpolation still generalizes well under noisy data on MNIST: source from [9].

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 73/ 86

Why uniform convergence fails in deep learning?

R(h?) ≤
1
n

n∑
i=1

L(h?x(ai), bi)︸ ︷︷ ︸
=0

+O

(√
c?

n

)
, whp.

te
st

 c
la

ss
ifi

ca
tio

n
er

ro
r (

%
)

added label noise (%)

Figure: Interpolation still generalizes well under noisy data on MNIST: source from [9].

◦ Observation: Generalization bounds vs. #training data [64, 86]

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 73/ 86

When does uniform convergence work?

Figure: Uniform convergence of interpolators: source from [86].

Definition (One-side uniform convergence [86])

sup
‖x‖≤B,Rn(hx)=0

{R(hx)−Rn(hx)}

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 74/ 86

Results for benign overfitting

Theorem (Simplified version of Corollary 1 in [47])
Under standard Gaussian data, noise setting, for over-parameterized least squares, we have

sup
‖x‖≤B,Rn(hx)=0

R(hx) .
B2Tr(Σ)

n
,whp.

Remarks: ◦ Via covariance splitting Σ = Σ1 ⊕ Σ2, we can improve this result if
I Σ1 is low rank
I Σ2 has fast eigenvalue decay [47]
I the target function has small norm
◦ Beyond linear regression [5]: NNs in non-lazy training regimes [27, 49]

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 75/ 86

Beyond benign overfitting

A

Benign

trainset

true f ∗

predicted f̂

B

Tempered
C

Catastrophic

Figure: As n→∞ and fixed p, interpolating methods can exhibit three types of overfitting: source from [60].

◦ Under the settings below, we will have benign overfitting: R(h?x)→ σ2

I early-stopped DNNs
I kernel ridge regression
I k-NN (k ∼ logn)
I Nadaraya-Watson kernel smoothing

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 76/ 86

Beyond benign overfitting

A

Benign

trainset

true f ∗

predicted f̂

B

Tempered
C

Catastrophic

Figure: As n→∞ and fixed p, interpolating methods can exhibit three types of overfitting: source from [60].

◦ Under the settings below, we will have tempered overfitting: R(h?x)→ cσ2

I interpolating DNNs
I Laplace kernel regression
I ReLU NTKs
I k-NN (constant k)
I simplicial interpolation

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 76/ 86

Beyond benign overfitting

A

Benign

trainset

true f ∗

predicted f̂

B

Tempered
C

Catastrophic

Figure: As n→∞ and fixed p, interpolating methods can exhibit three types of overfitting: source from [60].

◦ Under the settings below, we will have catastrophic overfitting: R(h?x)→∞
I Gaussian kernel regression
I critically-parameterized regression

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 76/ 86

How well do complexity measures correlate with generalization?

name definition correlation
Frobenius distance to initialization [65]

∑L

i=1 ‖Xi −X0
i ‖

2
F −0.263

Spectral complexity [4]
∏L

i=1 ‖Xi‖
(∑L

i=1
‖Xi‖

3/2
2,1

‖Xi‖3/2

)2/3

−0.537

Parameter Frobenius norm
∑L

i=1 ‖Xi‖2F 0.073
Path-norm [68]

∑
(i0,...,iL)

∏L

j=1

(
Xij ,ij−1

)2
0.373

Table: Complexity measures compared in the empirical study [45], and their correlation with generalization

Complexity measures are still far from explaining generalization in Deep Learning!

A more recent evaluation of many complexity measures is available [24].

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 77/ 86

Double descent

◦ A failure of conventional wisdom

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd→C of the form

h(x)=

N∑

k=1

akφ(x ; vk) where φ(x ; v):=e
√−1〈vk ,x〉,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N →∞, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H∞. While it is possible to directly use
H∞ [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd ×R, we find the predictor hn,N ∈
HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

∑n
i=1(h(xi)− yi)

2 over all functions h ∈HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN)
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm ‖h‖H∞ , which is generally
difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

Figure: The classical U-shaped risk curve vs. double-descent risk curve: source from [8].

I classical large-sample limit setting: n→∞ under fixed p
I modern high dimensional setting: n,m, p are comparably large

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 78/ 86

Double descent curve in practice (I)
◦ Typical examples:
I linear/nonlinear regression [36]
I random features, random forest, and shallow neural networks [8]

0 10 20 30 40 50 60
2

15

88

4

Te
st

 (%
)

Zero-one loss

RFF
Min. norm solution hn,
(original kernel)

0 10 20 30 40 50 60

0

1

10

100

1709

Te
st

Squared loss

RFF
Min. norm solution hn,
(original kernel)

Number of Random Fourier Features (×103) (N) 10 20 30 40 50
Number of Random Fourier Features (×103) (N)

(a) Random features model

0

20

40

60

Ze
ro

-o
ne

 lo
ss

 (%
) Test

Train

3 10 40 100 300 800
Number of parameters/weights (×103)

0.0

0.2

0.4

0.6

Sq
ua

re
d

lo
ss

Test
Train

(b) A fully connected neural network

Figure: Experiments on MNIST: source from [8].

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 79/ 86

Double descent curve in practice (II)

DEEP DOUBLE DESCENT:
WHERE BIGGER MODELS AND MORE DATA HURT

Preetum Nakkiran⇤

Harvard University
Gal Kaplun†

Harvard University
Yamini Bansal†
Harvard University

Tristan Yang
Harvard University

Boaz Barak
Harvard University

Ilya Sutskever
OpenAI

ABSTRACT

We show that a variety of modern deep learning tasks exhibit a “double-descent”
phenomenon where, as we increase model size, performance first gets worse and
then gets better. Moreover, we show that double descent occurs not just as a
function of model size, but also as a function of the number of training epochs.
We unify the above phenomena by defining a new complexity measure we call
the effective model complexity and conjecture a generalized double descent with
respect to this measure. Furthermore, our notion of model complexity allows us to
identify certain regimes where increasing (even quadrupling) the number of train
samples actually hurts test performance.

1 INTRODUCTION

Figure 1: Left: Train and test error as a function of model size, for ResNet18s of varying width
on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. All models
trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.

The bias-variance trade-off is a fundamental concept in classical statistical learning theory (e.g.,
Hastie et al. (2005)). The idea is that models of higher complexity have lower bias but higher vari-
ance. According to this theory, once model complexity passes a certain threshold, models “overfit”
with the variance term dominating the test error, and hence from this point onward, increasing model
complexity will only decrease performance (i.e., increase test error). Hence conventional wisdom
in classical statistics is that, once we pass a certain threshold, “larger models are worse.”

However, modern neural networks exhibit no such phenomenon. Such networks have millions of
parameters, more than enough to fit even random labels (Zhang et al. (2016)), and yet they perform
much better on many tasks than smaller models. Indeed, conventional wisdom among practitioners
is that “larger models are better’’ (Krizhevsky et al. (2012), Huang et al. (2018), Szegedy et al.

⇤Work performed in part while Preetum Nakkiran was interning at OpenAI, with Ilya Sutskever. We espe-
cially thank Mikhail Belkin and Christopher Olah for helpful discussions throughout this work. Correspondence
Email: preetum@cs.harvard.edu

†Equal contribution

1

ar
X

iv
:1

91
2.

02
29

2v
1

 [c
s.L

G
]

4
D

ec
 2

01
9

Figure: Left: Train and test error as a function of model size, for ResNet18s of varying width on CIFAR-10 with 15% label noise.
Right: Test error, shown for varying train epochs: source from [66].

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 80/ 86

Double descent curve in practice (III)

Figure: Left: The double descent phenomenon, where the number of parameters is used as the model complexity. Middle: The
norm of the learned model is peaked around n ≈ p. Right: The test error against the norm of the learnt model. The color bar
indicate the number of parameters and the arrows indicates the direction of increasing model size. Their relationship are closer
to the convention wisdom than to a double descent. source: [69]. This is the same setting as in Section 5.2 of [67].

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 81/ 86

From neural networks to random features model [73]

◦ 1-hidden-layer neural network with m neurons (fully-connected architecture)

I Let X1 ∈ Rm×p, a ∈ Rp, X2 ∈ Rm, and µ2 ∈ R

hx(a) :=

[
X2

] activationy
σ

weight
↓[

X1

] input
↓[
a

]
+

bias
↓[
µ1

]
︸ ︷︷ ︸

hidden layer = fixed random features ϕ(a)

+

bias
↓[
µ2

]
, x := [X1,X2, µ1, µ2]

I X1: Gaussian initialization and then fixed
I X2: to be learned

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 82/ 86

Our understanding on double descent [Liu, Suykens, Cevher, NeurIPS (2022)]

◦ High dimensional setting: #training data n, #neurons m, input dimension p are comparably large.

(a) SGD vs. min-norm solution (b) Bias . B1 + B2 + B3 (c) Variance . V1 + V2 + V3

Figure: Test MSE, Bias, and Variance of RF regression as a function of the ratio m/n on MNIST data set (digit 3 vs. 7) for
p = 784 and n = 600 across the Gaussian kernel. Source: [54].

Remarks: ◦ interplay between excess risk and optimization
◦ monotonic decreasing bias and unimodal variance ⇒ double descent
◦ converge to O(1) order
◦ constant step-size SGD vs. min norm solution

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 83/ 86

Conclusions: Good, bad, ugly

good bad ugly
kernel methods analysis performance curse of dimensionality
neural networks performance analysis over-parameterization

robustness width depth initialization
generalization benign overfitting catastrophic overfitting model complexity

X(0) X(t)

lazy training regime
Lecun, He NTK

mean field regime
Xavier

non-lazy training regime

X(t)

∞

supt∈[0,+∞)

∥
Xl(t)−Xl(0)

∥
F∥

Xl(0)
∥

F
→ ???

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 84/ 86

Conclusions: Function spaces vs models

Understanding from a function space perspective!

RKHS kernel methods1

hyper-RKHS hyper-kernel methods2

Barron space two-layer NNs3

Besov space deep NNs4

bivariate form

variational form

smoothness

Fanghui Liu web: https: // www. lfhsgre. org/ fanghui.liu@epfl.ch

Research Statement
Understanding generalization in machine learning algorithms: a function approximation perspective

Understanding and predicting the unknown and uncertain real world from past observations is
always an enduring appealing and outstanding topic in artificial intelligence. My research attempts
to achieve this ultimate and ideal goal by concentrating on theoretical understanding generalization
properties of machine learning algorithms. The “generalization” terminology means that a machine
learning model, learned from the past observations, is able to generalize on unseen data in super-
vised learning. This concept is also suitable to sequential decision, e.g., reinforcement learning (RL)
that an agent needs to learn how to predict and control unknown and often stochastic environments,
i.e., exploration.

Achieving this goal requires to study what regularizer Ω(f) can be defined and controlled on the
functions defined by models, and what function space F is suitable for learning.

The commonly used function space in learning theory is the reproducing kernel Hilbert space
(RKHS) [Aro50], which provides the ability to approximate functions by nonparametric functional
representations. The point-wise convergence property makes RKHS an appealing choice in ma-
chine learning problems with nice theoretical guarantees in an approximation theory view. My
major research interests starts with kernel learning algorithms, kernel approximation for scalabil-
ity, and theoretically understanding machine learning algorithms in under- and over-parameterized
regimes.

random
features

kernel
methods

neural
networks

scalability

over-parameterization
NTK

RKHS hyper-RKHS Barron space Besov space

kernel methods hyper-kernel methods two-layer NNs DNNs

kernel learning kernel learning double descent generalization, RL

Laplace in E Laplace in N Laplace in N

Legendre in ϵ = E
N Legendre in ρ = N

V
Legendre in ρ = N

V

1 Current achievements
My research endeavour has led to several scientific contributions at the flagship conferences and
journals in machine learning. Here I center around the work in recent years on learning in hyper-
RKHS [LSH+21, JMLR21], kernel approximation via random features, double descent [LSC22,
NeurIPS22], deep neural function approximation [LVC22, NeurIPS22].

1.1 Learning with kernels and random features

Learning in hyper-RKHS: The structure of RKHS is determined by the reproducing kernel
k, but selecting appropriate kernels is not a trivial task. More importantly, RKHS is not large
enough, for example, to approximate a single ReLU neuron with an ε-approximation error, kernel

Page 1 of 6

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 85/ 86

Thanks for your attention!

Q & A

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 86/ 86

References I

[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song.
A convergence theory for deep learning via over-parameterization.
In International Conference on Machine Learning, pages 242–252. PMLR, 2019.
(Cited on pages 60 and 80.)

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein generative adversarial networks.
In International conference on machine learning, pages 214–223. PMLR, 2017.
(Cited on page 36.)

[3] Francis Bach.
Breaking the curse of dimensionality with convex neural networks.
Journal of Machine Learning Research, 18(1):629–681, 2017.
(Cited on page 78.)

[4] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky.
Spectrally-normalized margin bounds for neural networks.
In Advances in Neural Information Processing Systems 30, pages 6240–6249. Curran Associates, Inc., 2017.
(Cited on pages 87, 88, and 114.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 1/ 23

References II

[5] Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler.
Benign overfitting in linear regression.
Proceedings of the National Academy of Sciences, 117(48):30063–30070, 2020.
(Cited on pages 73, 74, and 110.)

[6] Peter L Bartlett and Shahar Mendelson.
Rademacher and gaussian complexities: Risk bounds and structural results.
Journal of Machine Learning Research, 3(Nov):463–482, 2002.
(Cited on page 103.)

[7] Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin.
Deep learning: a statistical viewpoint.
Acta numerica, 30:87–201, 2021.
(Cited on page 82.)

[8] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal.
Reconciling modern machine-learning practice and the classical bias–variance trade-off.
Proceedings of the National Academy of Sciences, 116(32):15849–15854, 2019.
(Cited on pages 73, 74, 115, and 116.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 2/ 23

References III

[9] Mikhail Belkin, Siyuan Ma, and Soumik Mandal.
To understand deep learning we need to understand kernel learning.
In International Conference on Machine Learning, pages 541–549. PMLR, 2018.
(Cited on pages 107 and 108.)

[10] Michel Benaïm.
Dynamics of stochastic approximation algorithms.
In Jacques Azéma, Michel Émery, Michel Ledoux, and Marc Yor, editors, Séminaire de Probabilités XXXIII,
volume 1709 of Lecture Notes in Mathematics, pages 1–68. Springer Berlin Heidelberg, 1999.
(Cited on pages 18, 19, and 20.)

[11] Michel Benaïm and Morris W. Hirsch.
Asymptotic pseudotrajectories and chain recurrent flows, with applications.
Journal of Dynamics and Differential Equations, 8(1):141–176, 1996.
(Cited on pages 42 and 43.)

[12] Sebastien Bubeck and Mark Sellke.
A universal law of robustness via isoperimetry.
In Advances in Neural Information Processing Systems, 2021.
(Cited on pages 87 and 88.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 3/ 23

References IV

[13] Michael Celentano, Theodor Misiakiewicz, and Andrea Montanari.
Minimum complexity interpolation in random features models.
arXiv preprint arXiv:2103.15996, 2021.
(Cited on page 78.)

[14] Volkan Cevher and Bang Cong Vu.
A reflected forward-backward splitting method for monotone inclusions involving lipschitzian operators.
Set-Valued and Variational Analysis, pages 1–12, 2020.
(Cited on page 40.)

[15] Niladri S Chatterji and Philip M Long.
Foolish crowds support benign overfitting.
Journal of Machine Learning Research, 23(125):1–12, 2022.
(Cited on pages 73 and 74.)

[16] Lenaic Chizat, Edouard Oyallon, and Francis Bach.
On lazy training in differentiable programming.
Advances in Neural Information Processing Systems, 32, 2019.
(Cited on page 82.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 4/ 23

References V

[17] Lenaic Chizat, Edouard Oyallon, and Francis Bach.
On lazy training in differentiable programming.
arXiv preprint arXiv:1812.07956, 2019.
(Cited on pages 83, 85, and 86.)

[18] J. Danskin.
The theory of max-min, with applications.
SIAM Journal on Applied Mathematics, 14(4):641–664, 1966.
(Cited on page 25.)

[19] Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis.
The complexity of constrained min-max optimization.
arXiv preprint arXiv:2009.09623, 2020.
(Cited on page 39.)

[20] Jelena Diakonikolas, Constantinos Daskalakis, and Michael Jordan.
Efficient methods for structured nonconvex-nonconcave min-max optimization.
In International Conference on Artificial Intelligence and Statistics, pages 2746–2754. PMLR, 2021.
(Cited on pages 45, 46, 47, 48, and 49.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 5/ 23

References VI

[21] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai.
Gradient descent finds global minima of deep neural networks.
In International Conference on Machine Learning, pages 1675–1685, 2019.
(Cited on page 60.)

[22] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh.
Gradient descent provably optimizes over-parameterized neural networks.
arXiv preprint arXiv:1810.02054, 2018.
(Cited on pages 18, 19, 59, and 60.)

[23] Richard Mansfield Dudley.
The speed of mean glivenko-cantelli convergence.
The Annals of Mathematical Statistics, 40(1):40–50, 1969.
(Cited on page 34.)

[24] Gintare Karolina Dziugaite, Alexandre Drouin, Brady Neal, Nitarshan Rajkumar, Ethan Caballero, Linbo
Wang, Ioannis Mitliagkas, and Daniel M Roy.
In search of robust measures of generalization.
Advances in Neural Information Processing Systems, 33:11723–11733, 2020.
(Cited on page 114.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 6/ 23

References VII

[25] Weinan E, Chao Ma, and Lei Wu.
A comparative analysis of optimization and generalization properties of two-layer neural network and random
feature models under gradient descent dynamics.
Science China Mathematics, 2020.
(Cited on page 80.)

[26] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash,
Tadayoshi Kohno, and Dawn Song.
Robust physical-world attacks on deep learning visual classification.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1625–1634, 2018.
(Cited on pages 66 and 67.)

[27] Spencer Frei, Niladri S Chatterji, and Peter Bartlett.
Benign overfitting without linearity: Neural network classifiers trained by gradient descent for noisy linear
data.
In Conference on Learning Theory, pages 2668–2703. PMLR, 2022.
(Cited on pages 73, 74, and 110.)

[28] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan.
Escaping from saddle points—online stochastic gradient for tensor decomposition.
In Conference on Learning Theory, pages 797–842, 2015.
(Cited on pages 18 and 19.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 7/ 23

References VIII

[29] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan.
Escaping from saddle points — Online stochastic gradient for tensor decomposition.
In COLT ’15: Proceedings of the 28th Annual Conference on Learning Theory, 2015.
(Cited on pages 18, 19, 21, and 22.)

[30] Saeed Ghadimi and Guanghui Lan.
Stochastic first- and zeroth-order methods for nonconvex stochastic programming.
SIAM Journal on Optimization, 23(4):2341–2368, 2013.
(Cited on pages 18, 19, and 22.)

[31] Xavier Glorot and Yoshua Bengio.
Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pages
249–256, 2010.
(Cited on page 80.)

[32] Guang-Bin Huang and H. A. Babri.
Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear
activation functions.
IEEE Transactions on Neural Networks, 9(1):224–229, 1998.
(Cited on pages 18 and 19.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 8/ 23

References IX

[33] Osman Güler.
On the convergence of the proximal point algorithm for convex minimization.
SIAM J. Control Opt., 29(2):403–419, March 1991.
(Cited on page 40.)

[34] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans.
In Advances in Neural Information Processing Systems, pages 5767–5777, 2017.
(Cited on page 36.)

[35] Moritz Hardt and Tengyu Ma.
Identity matters in deep learning.
arXiv preprint arXiv:1611.04231, 2016.
(Cited on pages 18 and 19.)

[36] Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani.
Surprises in high-dimensional ridgeless least squares interpolation.
arXiv preprint arXiv:1903.08560, 2019.
(Cited on page 116.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 9/ 23

References X

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pages 1026–1034, 2015.
(Cited on page 80.)

[38] Ya-Ping Hsieh, Chen Liu, and Volkan Cevher.
Finding mixed Nash equilibria of generative adversarial networks.
In International Conference on Machine Learning, 2019.
(Cited on page 52.)

[39] Ya-Ping Hsieh, Panayotis Mertikopoulos, and Volkan Cevher.
The limits of min-max optimization algorithms: Convergence to spurious non-critical sets.
arXiv preprint arXiv:2006.09065, 2020.
(Cited on pages 41, 42, 43, and 44.)

[40] Yu-Guan Hsieh, Franck Iutzeler, Jérôme Malick, and Panayotis Mertikopoulos.
Explore aggressively, update conservatively: Stochastic extragradient methods with variable stepsize scaling.
In NeurIPS ’20: Proceedings of the 34th International Conference on Neural Information Processing
Systems, 2020.
(Cited on pages 45, 46, 47, 48, and 49.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 10/ 23

References XI

[41] Guang-Bin Huang.
Learning capability and storage capacity of two-hidden-layer feedforward networks.
IEEE Transactions on Neural Networks, 14(2):274–281, 2003.
(Cited on pages 18, 19, and 60.)

[42] Hanxun Huang, Yisen Wang, Sarah Monazam Erfani, Quanquan Gu, James Bailey, and Xingjun Ma.
Exploring architectural ingredients of adversarially robust deep neural networks.
In Advances in Neural Information Processing Systems, 2021.
(Cited on pages 87, 88, and 93.)

[43] S. . Huang and Y. . Huang.
Bounds on the number of hidden neurons in multilayer perceptrons.
IEEE Transactions on Neural Networks, 2(1):47–55, 1991.
(Cited on pages 18 and 19.)

[44] Arthur Jacot, Franck Gabriel, and Clément Hongler.
Neural tangent kernel: Convergence and generalization in neural networks.
In Advances in neural information processing systems, pages 8571–8580, 2018.
(Cited on pages 76, 77, 83, 85, and 86.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 11/ 23

References XII

[45] Yiding Jiang*, Behnam Neyshabur*, Dilip Krishnan, Hossein Mobahi, and Samy Bengio.
Fantastic generalization measures and where to find them.
In International Conference on Learning Representations, 2020.
(Cited on page 114.)

[46] Kenji Kawaguchi and Jiaoyang Huang.
Gradient descent finds global minima for generalizable deep neural networks of practical sizes.
In 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
92–99. IEEE, 2019.
(Cited on pages 18, 19, and 60.)

[47] Frederic Koehler, Lijia Zhou, Danica J Sutherland, and Nathan Srebro.
Uniform convergence of interpolators: Gaussian width, norm bounds and benign overfitting.
Advances in Neural Information Processing Systems, 34:20657–20668, 2021.
(Cited on page 110.)

[48] Galina M Korpelevich.
The extragradient method for finding saddle points and other problems.
Matecon, 12:747–756, 1976.
(Cited on page 40.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 12/ 23

References XIII

[49] Yiwen Kou, Zixiang Chen, Yuanzhou Chen, and Quanquan Gu.
Benign overfitting for two-layer relu networks.
arXiv preprint arXiv:2303.04145, 2023.
(Cited on page 110.)

[50] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller.
Efficient backprop.
In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.
(Cited on page 80.)

[51] Jason D. Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz, Michael I. Jordan, and Benjamin
Recht.
First-order methods almost always avoid strict saddle points.
Mathematical Programming, 176(1):311–337, February 2019.
(Cited on pages 18, 19, and 21.)

[52] Binghui Li, Jikai Jin, Han Zhong, John Hopcroft, and Liwei Wang.
Why robust generalization in deep learning is difficult: Perspective of expressive power.
In Advances in neural information processing systems, pages 4370–4384, 2022.
(Cited on page 98.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 13/ 23

References XIV

[53] Yuanzhi Li and Yingyu Liang.
Learning overparameterized neural networks via stochastic gradient descent on structured data.
In Advances in Neural Information Processing Systems, pages 8157–8166, 2018.
(Cited on pages 18, 19, and 60.)

[54] Fanghui Liu, Johan A.K. Suykens, and Volkan Cevher.
On the double descent of random features models trained with sgd.
arXiv preprint arXiv:2110.06910, 2021.
(Cited on page 120.)

[55] Lennart Ljung.
Analysis of recursive stochastic algorithms.
IEEE Transactions on Automatic Control, 22(4):551–575, August 1977.
(Cited on pages 18, 19, and 20.)

[56] Tao Luo, Zhi-Qin John Xu, Zheng Ma, and Yaoyu Zhang.
Phase diagram for two-layer relu neural networks at infinite-width limit.
Journal of Machine Learning Research, 2021.
(Cited on pages 80 and 81.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 14/ 23

References XV

[57] Tao Luo, Zhi-Qin John Xu, Zheng Ma, and Yaoyu Zhang.
Phase diagram for two-layer relu neural networks at infinite-width limit.
Journal of Machine Learning Research, 22(71):1–47, 2021.
(Cited on pages 83, 85, and 86.)

[58] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks.
In ICLR ’18: Proceedings of the 2018 International Conference on Learning Representations, 2018.
(Cited on pages 27, 28, and 31.)

[59] Yura Malitsky and Matthew K Tam.
A forward-backward splitting method for monotone inclusions without cocoercivity.
SIAM Journal on Optimization, 30(2):1451–1472, 2020.
(Cited on page 40.)

[60] Neil Mallinar, James B Simon, Amirhesam Abedsoltan, Parthe Pandit, Mikhail Belkin, and Preetum
Nakkiran.
Benign, tempered, or catastrophic: A taxonomy of overfitting.
In Advances in Neural Information Processing Systems, 2022.
(Cited on pages 111, 112, and 113.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 15/ 23

References XVI

[61] Song Mei, Andrea Montanari, and Phan-Minh Nguyen.
A mean field view of the landscape of two-layers neural networks.
Proceedings of the National Academy of Sciences (PNAS), 2018.
(Cited on page 80.)

[62] Panayotis Mertikopoulos, Nadav Hallak, Ali Kavis, and Volkan Cevher.
On the almost sure convergence of stochastic gradient descent in non-convex problems.
pages 1117–1128, 2020.
(Cited on pages 18, 19, 20, 21, and 22.)

[63] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.
Spectral normalization for generative adversarial networks.
arXiv preprint arXiv:1802.05957, 2018.
(Cited on page 36.)

[64] Vaishnavh Nagarajan and J Zico Kolter.
Uniform convergence may be unable to explain generalization in deep learning.
In Advances in Neural Information Processing Systems, volume 32, 2019.
(Cited on page 108.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 16/ 23

References XVII

[65] Vaishnavh Nagarajan and J. Zico Kolter.
Generalization in Deep Networks: The Role of Distance from Initialization.
arXiv e-prints, page arXiv:1901.01672, January 2019.
(Cited on page 114.)

[66] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever.
Deep double descent: Where bigger models and more data hurt.
(Cited on page 117.)

[67] Preetum Nakkiran, Prayaag Venkat, Sham M. Kakade, and Tengyu Ma.
Optimal regularization can mitigate double descent.
In International Conference on Learning Representations, 2021.
(Cited on page 118.)

[68] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro.
Norm-based capacity control in neural networks.
In Conference on Learning Theory, pages 1376–1401, 2015.
(Cited on page 114.)

[69] Andrew Ng.
Cs229 lecture notes, 2022.
(Cited on page 118.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 17/ 23

References XVIII

[70] Quynh Nguyen and Matthias Hein.
Optimization landscape and expressivity of deep cnns.
In International conference on machine learning, pages 3730–3739. PMLR, 2018.
(Cited on pages 18, 19, and 60.)

[71] Thomas Pethick, Olivier Fercoq, Puya Latafat, Panagiotis Patrinos, and Volkan Cevher.
Solving stochastic weak minty variational inequalities without increasing batch size.
In The Eleventh International Conference on Learning Representations, 2023.
(Cited on pages 45, 46, 47, 48, and 49.)

[72] Thomas Pethick, Panagiotis Patrinos, Olivier Fercoq, Volkan Cevherå, and Puya Latafat.
Escaping limit cycles: Global convergence for constrained nonconvex-nonconcave minimax problems.
In International Conference on Learning Representations, 2022.
(Cited on pages 45, 46, 47, 48, and 49.)

[73] Ali Rahimi and Benjamin Recht.
Random features for large-scale kernel machines.
In Advances in Neural Information Processing Systems, pages 1177–1184, 2007.
(Cited on page 119.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 18/ 23

References XIX

[74] R. Tyrrell Rockafellar.
Convex Analysis.
Princeton Univ. Press, Princeton, NJ, 1970.
(Cited on page 40.)

[75] Grégory Roth and William H. Sandholm.
Stochastic approximations with constant step size and differential inclusions.
SIAM Journal on Control and Optimization, 51(1):525–555, 2013.
(Cited on pages 18, 19, and 20.)

[76] Chaehwan Song, Ali Ramezani-Kebrya, Thomas Pethick, Armin Eftekhari, and Volkan Cevher.
Subquadratic overparameterization for shallow neural networks.
In Proc. Advances in Neural Information Processing Systems (NeurIPS), 2021.
(Cited on pages 18 and 19.)

[77] Chaehwan Song, Ali Ramezani-Kebrya, Thomas Pethick, Armin Eftekhari, and Volkan Cevher.
Subquadratic overparameterization for shallow neural networks.
pages 11247–11259, 2021.
(Cited on page 60.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 19/ 23

References XX

[78] Jonathan Weed, Francis Bach, et al.
Sharp asymptotic and finite-sample rates of convergence of empirical measures in wasserstein distance.
Bernoulli, 25(4A):2620–2648, 2019.
(Cited on page 34.)

[79] Max Welling and Yee W Teh.
Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages 681–688, 2011.
(Cited on pages 18 and 19.)

[80] Boxi Wu, Jinghui Chen, Deng Cai, Xiaofei He, and Quanquan Gu.
Do wider neural networks really help adversarial robustness?
In Advances in Neural Information Processing Systems, 2021.
(Cited on pages 87, 88, and 93.)

[81] Zuxuan Wu, Ser-Nam Lim, Larry S Davis, and Tom Goldstein.
Making an invisibility cloak: Real world adversarial attacks on object detectors.
In European Conference on Computer Vision, pages 1–17. Springer, 2020.
(Cited on pages 6, 66, and 67.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 20/ 23

References XXI

[82] Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Russ R Salakhutdinov, and Kamalika Chaudhuri.
A closer look at accuracy vs. robustness.
In Advances in neural information processing systems, pages 8588–8601, 2020.
(Cited on page 98.)

[83] Gilad Yehudai and Ohad Shamir.
On the power and limitations of random features for understanding neural networks.
arXiv preprint arXiv:1904.00687, 2019.
(Cited on page 78.)

[84] Chulhee Yun, Suvrit Sra, and Ali Jadbabaie.
Small relu networks are powerful memorizers: a tight analysis of memorization capacity.
In Advances in Neural Information Processing Systems, pages 15558–15569, 2019.
(Cited on pages 18, 19, and 60.)

[85] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization.
arXiv preprint arXiv:1611.03530, 2016.
(Cited on pages 57, 58, 65, and 106.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 21/ 23

References XXII

[86] Lijia Zhou, Danica J Sutherland, and Nati Srebro.
On uniform convergence and low-norm interpolation learning.
Advances in Neural Information Processing Systems, 33:6867–6877, 2020.
(Cited on pages 108 and 109.)

[87] Zhenyu Zhu, Fanghui Liu, Grigorios G Chrysos, and Volkan Cevher.
Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization).
In Advances in Neural Information Processing Systems, 2022.
(Cited on pages 89, 90, 91, 92, and 94.)

[88] Martin Zinkevich.
Online convex programming and generalized infinitesimal gradient ascent.
In Proceedings of the 20th international conference on machine learning (icml-03), pages 928–936, 2003.
(Cited on page 40.)

[89] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu.
Gradient descent optimizes over-parameterized deep relu networks.
Machine Learning, 109(3):467–492, 2020.
(Cited on page 60.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 22/ 23

References XXIII

[90] Difan Zou and Quanquan Gu.
An improved analysis of training over-parameterized deep neural networks.
In Advances in Neural Information Processing Systems, pages 2055–2064, 2019.
(Cited on pages 18, 19, and 60.)

Tutorial at ICASSP 2023 | {fanghui.liu,volkan.cevher}@epfl.ch Slide 23/ 23

	Minmax optimization for NNs
	Convergence of SGD
	Over-parameterization in NNs
	Generalization of over-parameterized models
	Conclusion
	Appendix

