Random Features and Quadratures for Kernel Approximation and Double Descent

Fanghui Liu
fanghui.liu@epfl.ch

Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)
Switzerland

10th Nov. 2021
lions@epfl

 a. Google AI ~ans 5 (3) (e) orcEPFL
Outline

Research overview
Quadrature rules for kernel approximation
Deterministic Version
Stochastic Version
Unified Framework
Experiments

Random features in double descent

Conclusion

Research Overview: Kernel approximation

complex in low dimensions
Scalability of kernel methods: n-by- n kernel matrix.
Solution: approximate the kernel by a low-rank representation

- Nyström approximation: approximate the kernel matrix
- Random Fourier features ${ }^{1}$: approximate the kernel function

[^0]
Research Overview: Random Fourier features

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\phi(\mathbf{x}), \phi\left(\mathbf{x}^{\prime}\right)\right\rangle_{\mathcal{H}} \approx \varphi^{\top}(\mathbf{x}) \varphi\left(\mathbf{x}^{\prime}\right)
$$

where $\varphi(\mathbf{x}): \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ is an explicit feature mapping

Bochner's theorem [1]

For a shift-invariant $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$ and positive definite kernel,

$$
\begin{aligned}
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =\int_{\mathbb{R}^{d}} p(\omega) \exp \left(\mathrm{i} \omega^{\top}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right) \mathrm{d} \omega \\
& \approx \frac{1}{s} \sum_{j=1}^{s} \exp \left(\mathrm{i} \omega_{j}^{\top} \mathbf{x}\right) \exp \left(\mathrm{i} \omega_{j}^{\top} \mathbf{x}^{\prime}\right)^{*}=\varphi(\mathbf{x})^{\top} \varphi\left(\mathbf{x}^{\prime}\right)
\end{aligned}
$$

the explicit feature mapping:

$$
\varphi(\mathbf{x}):=\frac{1}{\sqrt{s}}\left[\exp \left(-\mathrm{i} \omega_{1}^{\top} \mathbf{x}\right), \cdots, \exp \left(-\mathrm{i} \omega_{s}^{\top} \mathbf{x}\right)\right]^{\top}
$$

Research Overview: Neural network view
RF model: a two-layer, (infinite)-width, fully-connected neural network

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbb{E}_{\omega \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}\right)}\left[\sigma\left(\omega^{\top} \mathbf{x}\right) \sigma\left(\omega^{\top} \mathbf{x}^{\prime}\right)\right]
$$

- Gaussian kernel: $\sigma(x)=[\cos (x), \sin (x)]^{\top}$
- the 1st-order arc-cosine kernel: $\sigma(x)=\max \{0, x\}$
- soft-max in attention: $\sigma(x)=\exp (x)$

Research Overview: Applied to Linearized Attention in Transformers

self attention

$$
\operatorname{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V})=\underbrace{\operatorname{softmax}\left(\mathbf{Q K}^{\top}\right)}_{:=\mathbf{A}} \mathbf{V} \approx \mathbf{Q}^{\prime} \mathbf{K}^{\prime \top} \mathbf{V},
$$

where $\mathbf{A}_{i j}=k\left(\mathbf{q}_{i}, \mathbf{k}_{j}\right)=\mathbb{E}\left[\sigma\left(\mathbf{q}_{i}\right)^{\top} \sigma\left(\mathbf{k}_{j}\right)\right]$

Figure: Approximation of self-attention. source: [2].
\checkmark soft-max in attention: $\exp \left(\mathbf{x}^{\top} \mathbf{x}^{\prime}\right)=\mathbb{E}_{\omega \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}\right)}\left[\exp \left(\omega^{\top} \mathbf{x}-\frac{\|\mathbf{x}\|_{2}^{2}}{2}\right) \exp \left(\omega^{\top} \mathbf{x}^{\prime}-\frac{\left\|\mathbf{x}^{\prime}\right\|_{2}^{2}}{2}\right)\right]$

- Towards a Unified Quadrature Framework for Large-scale Kernel Machines, TPAMI2021. Fanghui Liu, Xiaolin Huang (SJTU), Yudong Chen (Cornell), Johan A.K. Suykens (KU Leuven)
- On the Double Descent of Random Features Models Trained with SGD, arXiv:2110.06910 Fanghui Liu, Johan A.K. Suykens (KU Leuven), Volkan Cevher (EPFL)

Outline

Research overview
Quadrature rules for kernel approximation
Deterministic Version
Stochastic Version
Unified Framework
Experiments

Random features in double descent

Background: Numerical integration via quadrature

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbb{E}_{\omega \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}\right)} \underbrace{\left[\sigma\left(\omega^{\top} \mathbf{x}\right) \sigma\left(\omega^{\top} \mathbf{x}^{\prime}\right)\right]}_{\triangleq f(\omega)}:=I_{d}(f) \approx \sum_{i=1}^{N} a_{i} f\left(\gamma_{i}\right),
$$

Quadrature rule: few integration nodes \& high polynomial exactness

Gaussian quadrature (GQ)

- construction: one dimensional scheme
- $N=L^{d}$ nodes for $(2 L-1)$-degree rule
\Rightarrow curse of dimension

Sparse grid quadrature (SGQ) [3]

- not necessarily use full grid nodes
- how to construct: tensor products
$\Rightarrow N=\operatorname{poly}(d)$.

Deterministic Fully symmetric (D-FS) rule: fully symmetric concept

$$
k(\mathbf{x}, \mathbf{y}):=I_{d}(f)=\int_{\mathbb{R}^{d}} f(\omega) p(\omega) \mathrm{d} \omega
$$

- integration domain \mathbb{R}^{d}
- the Gaussian measure $p(\omega)$

Definition (fully symmetric [4])

unchanged under permutations and sign changes

- A point set/integration domain $\Omega \subset \mathbb{R}^{d}$ is fully symmetric if $\left(x_{1}, x_{2}, \cdots, x_{d}\right) \in \Omega$,

$$
\left(\pm x_{i_{1}}, \pm x_{i_{2}}, \cdots, \pm x_{i_{d}}\right) \in \Omega,
$$

where $\left(i_{1}, i_{2}, \cdots, i_{d}\right)$ is any permutation of $(1,2, \ldots, d)$.

- a function g is fully symmetric on $\Omega \subset \mathbb{R}^{d}$ if Ω is fully symmetric set and for any $\left(x_{1}, x_{2}, \cdots, x_{d}\right) \in \Omega$

$$
g\left(x_{1}, x_{2}, \cdots, x_{d}\right)=g\left(\pm x_{i_{1}}, \pm x_{i_{2}}, \cdots, \pm x_{i_{d}}\right)
$$

Deterministic Fully symmetric (D-FS) rule: Definition

Definition (fully symmetric interpolatory rule [5])

Given a generator $\lambda_{\mathbf{p}}=\left[\lambda_{p_{1}}, \lambda_{p_{2}}, \cdots, \lambda_{p_{d}}\right]^{\top}$ with $p_{i} \in\{0,1, \ldots, m\}$
$\Pi_{\mathbf{p}}$: permutations of \mathbf{p}
\mathcal{V}_{d} : the set of all vectors with sign changes

$$
\begin{gathered}
f\left(\lambda_{\mathbf{p}}\right)=\sum_{q \in \Pi_{\mathbf{p}}} \sum_{\nu \in \mathcal{V}_{d}} f\left(\nu_{1} \lambda_{q_{1}}, \nu_{2} \lambda_{q_{2}}, \ldots, \nu_{d} \lambda_{q_{d}}\right) . \\
I_{d}(f) \approx Q^{(m, d)}(f)=\sum_{\mathbf{p} \in \mathcal{P}^{(m, d)}} a_{\mathbf{p}}^{(m, d)} f\left(\lambda_{\mathbf{p}}\right) .
\end{gathered}
$$

Convergence rate [6]

$$
\left\|Q^{(m, d)}(f)-I_{d}(f)\right\|_{L_{2} \text { or } L_{\infty}}=\mathcal{O}\left(N^{-\theta}\right),
$$

where θ is some constant.

Kernel approximation via D-FS rules: Example

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \approx Q^{(1, d)}(f)=a_{0}^{(1, d)} f(\mathbf{0})+a_{1}^{(1, d)} \sum_{i=1}^{d}\left[f\left(\lambda_{1} \mathbf{e}_{i}\right)+f\left(-\lambda_{1} \mathbf{e}_{i}\right)\right]
$$

with generator: $\lambda_{0}=0$ and $\lambda_{1}=\sqrt{3}$.

Example: Gaussian kernel

$$
k(\mathbf{x}, \mathbf{y})=\exp \left(-\|\mathbf{x}-\mathbf{y}\|_{2}^{2} /\left(2 \sigma^{2}\right)\right) \approx \sum_{i=1}^{N} a_{i} \cos \left[\omega_{i}^{\top}(\mathbf{x}-\mathbf{y})\right]
$$

$$
\left\{\begin{array}{l}
\text { RFF: }\left\{\begin{array}{l}
\text { dense: } \mathbf{W}=\left[W_{i j}\right]_{d \times N} \text { with } W_{i j} \sim \mathcal{N}\left(0,1 / \sigma^{2}\right) \quad \mathcal{O}(N d) \\
a_{i} \equiv 1 / N
\end{array}\right. \\
\text { D-FS: }\left\{\begin{array}{l}
\text { sparse: } \mathbf{W}=\left[\gamma_{0}, \gamma_{1}, \cdots, \gamma_{2 d}\right] \\
\text { the weight is } a_{0}=1-\frac{d}{\lambda_{1}^{2}} \text { and } a_{i}=\frac{1}{2 \lambda_{1}^{2}} \quad \mathcal{O}(d)
\end{array}\right.
\end{array}\right.
$$

Third degree D-FS rule: Example

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \approx Q^{(1, d)}(f)=a_{0}^{(1, d)} f(\mathbf{0})+a_{1}^{(1, d)} \sum_{i=1}^{d}\left[f\left(\lambda_{1} \mathbf{e}_{i}\right)+f\left(-\lambda_{1} \mathbf{e}_{i}\right)\right]
$$

Example: Gaussian kernel

$$
k(\mathbf{x}, \mathbf{y})=\exp \left(-\|\mathbf{x}-\mathbf{y}\|_{2}^{2} /\left(2 \sigma^{2}\right)\right) \approx \sum_{i=1}^{N} a_{i} \cos \left[\omega_{i}^{\top}(\mathbf{x}-\mathbf{y})\right]
$$

The transformation matrix $\mathbf{W}=\left[\gamma_{0}, \gamma_{1}, \cdots, \gamma_{2 d}\right] \in \mathbb{R}^{d \times(2 d+1)}$ is

$$
\mathbf{W}=\left[\begin{array}{cccccccc}
0 & -\lambda_{1} & \lambda_{1} & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & -\lambda_{1} & \lambda_{1} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & -\lambda_{1} & \lambda_{1}
\end{array}\right] \in \mathbb{R}^{d \times(2 d+1)}
$$

Deterministic fully symmetric (D-FS) rule: Benefit

- time cost
- the number of required nodes: $N_{\mathrm{D}-\mathrm{FS}} \leqslant N_{\mathrm{SGQ}}$

Stochastic version: Semi-stochastic rule

D-FS outputs fixed-dimensional feature mapping

- third-degree: $N=2 d+1$
- fifth-degree: $N=1+2 d^{2}$

"semi-stochastic" version

randomize the weights but keep the (deterministic) nodes unchanged

$$
\begin{gather*}
\left\{\begin{array}{c}
a_{0}=1-\frac{d}{\lambda_{1}^{2}} \longrightarrow \tilde{a}_{0}^{(1, d)}(\omega) \equiv 1-\sum_{i=1}^{d} \omega_{i}^{2} / \lambda_{1}^{2} \\
a_{0}=\frac{1}{2 \lambda_{1}^{2}} \longrightarrow \tilde{a}_{1}^{(1, d)}(\omega) \equiv \sum_{i=1}^{d} \omega_{i}^{2} /\left(2 d \lambda_{1}^{2}\right) . \\
M^{(1, d)}(f, \omega)=\tilde{a}_{0}^{(1, d)} f(\mathbf{0})+\tilde{a}_{1}^{(1, d)} \sum_{i=1}^{d}\left[f\left(\lambda_{1} \mathbf{e}_{i}\right)+f\left(-\lambda_{1} \mathbf{e}_{i}\right)\right]
\end{array} .\right.
\end{gather*}
$$

Stochastic version: Definition

"semi-stochastic rule"

- still output fixed-dimensional feature mapping
- biased: $\mathbb{E}_{\omega}\left[M^{(1, d)}(f, \omega)\right]=Q^{(1, d)}(f) \neq I_{d}(f)$.

control variates: $f(\omega) \rightarrow$ difference

$k(\mathbf{x}, \mathbf{y})=Q^{(1, d)}(f)+\mathbb{E}_{\omega}\left[f(\omega)-M^{(1, d)}(f, \omega)\right]$

Stochastic fully-symmetric rule

define $R_{1}(f, \omega)=Q^{(1, d)}(f)+f(\omega)-M^{(1, d)}(f, \omega)$, third-degree S-FS is

$$
\begin{equation*}
k(\mathbf{x}, \mathbf{y}) \approx \bar{R}_{1}(f, \omega):=\frac{1}{D} \sum_{i=1}^{D} R_{1}\left(f, \omega_{i}\right) \tag{2}
\end{equation*}
$$

with $\left\{\omega_{i}\right\}_{i=1}^{D} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}\right)$.

Stochastic version: Feature mapping

the final feature mapping associated with $\bar{R}_{1}(f, \omega)$ is given by

$$
\begin{equation*}
\widehat{\Phi}(\mathbf{x})=\left[\varphi(\mathbf{x})^{\top},\left(\frac{\mathrm{i}}{D} \sum_{i=1}^{D} \widetilde{\Phi}\left(\mathbf{x}, \omega_{i}\right)\right)^{\top}, \Phi(\mathbf{x})^{\top}\right]^{\top} \in \mathbb{R}^{D+4 d+2} \tag{3}
\end{equation*}
$$

where $\left\{\omega_{i}\right\}_{i=1}^{D} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}\right)$.

- $\varphi(\mathbf{x})^{\top}$ corresponds to RFF
- $\widetilde{\Phi}\left(\mathbf{x}, \omega_{i}\right)$ corresponds to "semi-stochastic" version $M^{(1, d)}(f)$
- $\Phi(\mathbf{x})$ corresponds to deterministic version $Q^{(1, d)}(f)$

Stochastic version: Statistical properties

Unbiased

$k(\mathbf{x}, \mathbf{y}):=I_{d}(f)=\mathbb{E}_{\omega} \bar{R}_{1}(f, \omega)$.

Variance reduction

For Gaussian kernel $k(\mathbf{x}, \mathbf{y})=\exp \left(-\|\mathbf{x}-\mathbf{y}\|_{2}^{2} /\left(2 \sigma^{2}\right)\right)$, denoting $z:=\|\mathbf{z}\|_{2}$ with $\mathbf{z}:=(\mathbf{x}-\mathbf{y}) / \sigma$, $Q:=Q^{(1, d)}(f)$, we have

$$
\begin{equation*}
\mathbb{V}\left[\bar{R}_{1}(f, \omega)\right]-\mathbb{V}[\mathrm{RFF}]=\frac{2}{D d} \underbrace{\left(\left[(1-Q)-\frac{1}{2} z^{2} e^{-\frac{z^{2}}{2}}\right]^{2}-\frac{1}{4} z^{4} e^{-z^{2}}\right)}_{\hat{=} h_{\mathrm{S}-\mathrm{FS}}(\mathbf{z})}, \tag{4}
\end{equation*}
$$

which implies $\mathbb{V}\left[\bar{R}_{1}(f, \omega)\right]-\mathbb{V}[$ RFF $]<0$ when $1-Q<z^{2} e^{-\frac{z^{2}}{2}}$.

Stochastic version: Condition validation

$$
\begin{aligned}
& \mathbb{V}\left[\bar{R}_{1}(f, \omega)\right]-\mathbb{V}[\mathrm{RFF}]<0 \text { when } 1-Q<z^{2} e^{-\frac{z^{2}}{2}} . \\
\Longleftrightarrow & \frac{d}{3}-\frac{1}{3} \sum_{i=1}^{d} \cos \left(\sqrt{3} \mathbf{e}_{i}^{\top} \mathbf{z}\right)-\|\mathbf{z}\|_{2}^{2} \exp \left(-\|\mathbf{z}\|_{2}^{2} / 2\right)<0 .
\end{aligned}
$$

Existence: find a hyper-ball $\mathcal{S}^{d}\left(r_{\max }\right):=\left\{\mathbf{z} \in \mathbb{R}^{d}:\|\mathbf{z}\|_{2} \leq r_{\max }\right\}$
(a one-dimensional optimization to solve $r_{\text {max }}$)

Figure: Empirical distribution of $\|\mathbf{z}\|_{2}$

Stochastic version: Comparison

Figure: Comparison of $\mathrm{ORF}^{2}, \mathrm{SSR}^{3}$ (a) and S-FS (b).

$$
\begin{gathered}
\mathbb{V}[\mathrm{ORF}]-\mathbb{V}[\mathrm{RFF}] \leq \frac{1}{D} h_{\mathrm{ORF}}(z) \quad \text { [an exp. growth function] } \\
\mathbb{V}[\mathrm{SSR}]-\mathbb{V}[\mathrm{RFF}] \leq \frac{1}{D} h_{\mathrm{SSR}}(z), \quad \text { [at } \mathcal{O}(1) \text { order] }
\end{gathered}
$$

[^1]
Unified framework

Figure: Relationship between quadrature based methods.

SGQ: nodes: $\left\{-\hat{p}_{1}, 0, \hat{p}_{1}\right\}$ and weights $\left(\hat{a}_{1}, \hat{a}_{0}, \hat{a}_{1}\right)$,

$$
I_{d}(f) \approx\left(1-d+d \hat{a}_{0}\right) f(\mathbf{0})+\hat{a}_{1} \sum_{j=1}^{d}\left[f\left(\hat{p}_{1} \mathbf{e}_{j}\right)+f\left(-\hat{p}_{1} \mathbf{e}_{j}\right)\right] .
$$

by taking $\hat{a}_{0}:=1-\frac{1}{\lambda_{1}^{2}}, \hat{p}_{1}:=\lambda_{1}, \hat{a}_{1}=\frac{1}{2 \lambda_{1}^{2}}$.

Unified framework

Experimental results: Evaluation on deterministic rules

Compared methods

RFF ([7] NeurIPS2007): Monte Carlo sampling from $p(\omega)$
QMC ([8] JMLR2016): a low-discrepancy Halton sequence
Orthogonal constraint: ORF ([9] NeurIPS2016), ROM([10] NeurIPS2017)
Quadrature methods: SGQ([11] NeurIPS2017), SSR([12] NeurIPS2018)

Figure: Results on the covtype dataset with $n=581,012$ across Gaussian kernel.

Experimental results: Variance reduction of stochastic rules

adaptive feature mapping dimension: $D=\{2 d, 4 d, 8 d, 16 d, 32 d\}$.

Figure: Benefits of our S-FS rule in Eq. (3) against RFF across the Gaussian kernel on the magic04 data set.

Experimental results: Evaluation on stochastic rules

Figure: Results on the magic04 dataset across the Gaussian kernel.

- reduction on approximation error
- in the same time complexity
- no difference on generalization performance

Outline

```
Research overview
Quadrature rules for kernel approximation
    Deterministic Version
    Stochastic Version
    Unified Framework
    Experiments
```

Random features in double descent

[^2]
Background: Double descent

over-parameterized models, e.g., neural networks, random features

- high dimensions: large n and d
- abnormal phenomena: training error can be zero but still generalize well

Figure: Bias-variance trade-off [13] (Belkin et al. PNAS2019).

Research Overview: Motivation

- interplay between optimization and excess risk: trained by SGD
- bias-variance decomposition for understanding multiple randomness sources

	data assumption	solution	result
(Hastie et al., 2019)	Gaussian	closed-form	variance \nearrow
(Ba et al., 2020)	Gaussian	GD	variance $\nearrow \searrow$
(Mei \& Montanari, 2019)	i.i.d on sphere	closed-form	variance, bias \nearrow
(d'Ascoli et al., 2020a)	Gaussian	closed-form	refined ${ }^{2}$
(Gerace et al., 2020)	Gaussian	closed-form	$\nearrow \searrow$
(Adlam \& Pennington, 2020)	Gaussian	closed-form	refined
(Dhifallah \& Lu, 2020)	Gaussian	closed-form	$\nearrow \searrow \searrow$
(Hu \& Lu, 2020)	Gaussian	closed-form	$\nearrow \searrow$
(Liao et al., 2020)	general	closed-form	$\nearrow \searrow$
Lin \& Dobriban, 2021)	isotropic features with finite moments	\searrow	
(Li et al., 2021)	correlated features with polynomial decay on Σ_{d}	closed form	interpolation learning
Ours	(at least) sub-exponential data	SGD	variance $\nearrow \searrow$, bias \searrow

[^3]Problem settings: Random features regression model
data: $y=f_{\rho}(\mathbf{x})+\varepsilon$

- training data: $\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{n} \sim \rho$

Assumption: sub-exponential data and $\|\mathbf{x}\|_{2}^{2} \sim \mathcal{O}(d)$

- target function: $f_{\rho}(\mathbf{x})=\int_{Y} y \mathrm{~d} \rho(y \mid \mathbf{x})$
- noise: $\mathbb{E}(\varepsilon)=0$ and $\mathbb{E}\left(\varepsilon^{2}\right)=\tau^{2}$

function space

define the random features mapping $\varphi(\mathbf{x}):=\frac{1}{\sqrt{m}} \sigma(\mathbf{W} \mathbf{x} / \sqrt{d})$,

$$
\mathcal{H}:=\left\{f \in L_{\rho_{X}}^{2} \mid f(\mathbf{x})=\langle\theta, \varphi(\mathbf{x})\rangle\right\}, \quad \mathbf{W}_{i j} \sim \mathcal{N}(0,1)
$$

covariance operator: $\Sigma_{m}:=\int_{X}[\varphi(\mathbf{x}) \otimes \varphi(\mathbf{x})] \mathrm{d} \rho_{X}(\mathbf{x})$
expected covariance operator: $\Sigma_{m}:=\mathbb{E}_{\mathbf{x}, \mathbf{W}}[\varphi(\mathbf{x}) \otimes \varphi(\mathbf{x})]$

Problem settings: averaged SGD under adaptive step-size setting

$$
\theta_{t}=\theta_{t-1}+\gamma_{t}\left[y_{t}-\left\langle\theta_{t-1}, \varphi\left(\mathbf{x}_{t}\right)\right\rangle\right] \varphi\left(\mathbf{x}_{t}\right), \quad t=1,2, \ldots n,
$$

- averaged output: $\bar{\theta}_{n}:=\frac{1}{n} \sum_{t=0}^{n-1} \theta_{t} \Longrightarrow \bar{f}_{n}=\left\langle\varphi(\cdot), \bar{\theta}_{n}\right\rangle$
- adaptive step-size: $\gamma_{t}:=\gamma_{0} t^{-\zeta}, \zeta \in[0,1)$
- optimal solution: $f^{*}=\arg \min _{f \in \mathcal{H}}\left\|f-f_{\rho}\right\|_{L_{\rho_{X}}^{2}}^{2}$
- averaged excess risk: $\left.\mathbb{E}\left\|\bar{f}_{n}-f^{*}\right\|_{L_{\rho_{X}}^{2}}^{2}=\mathbb{E} \mathbf{X}, \mathbf{W}, \varepsilon / \bar{f}_{n}-f^{*}, \Sigma_{m}\left(\bar{f}_{n}-f^{*}\right)\right\rangle$

Properties of covariance operators

$\sigma(\cdot): \mathbb{R} \mapsto \mathbb{R}$ Lipschitz continuous
covariance operator $\Sigma_{m}:=\mathbb{E}_{\mathbf{x}}[\varphi(\mathbf{x}) \otimes \varphi(\mathbf{x})]$
expected covariance operator $\widetilde{\Sigma}_{m}:=\mathbb{E}_{\mathbf{x}, \mathbf{W}}[\varphi(\mathbf{x}) \otimes \varphi(\mathbf{x})]$

eigenvalue of $\widetilde{\Sigma}_{m}$

the same diagonal/non-diagonal elements: $\mathcal{O}(1 / m)$
two distinct eigenvalues: $\widetilde{\lambda}_{1} \sim \mathcal{O}(1), \widetilde{\lambda}_{2} \sim \mathcal{O}(1 / m)$

sub-exponential random variables

$\left\|\Sigma_{m}\right\|_{2},\left\|\Sigma_{m}-\widetilde{\Sigma}_{m}\right\|_{2}, \operatorname{Tr}\left(\Sigma_{m}\right)$, and $\left\|\widetilde{\Sigma}_{m}^{-1} \mathbb{E}_{\mathbf{W}}\left(\Sigma_{m}^{2}\right)\right\|_{2}$ with $\mathcal{O}(1)$ sub-exponential norm order

Proof framework

```
excess risk \mathbb{E}
```


Findings:

- expected covariance operator $\widetilde{\Sigma}_{m}$ has only two distinct eigenvalues
- monotonic bias and unimodal variance
- same convergence rates: constant step-size SGD vs. min-norm solution

Experiments on MNIST

Gaussian kernel $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}^{2}}{2 d}\right)$

Figure: Test MSE (mean \pm std.) of RF regression as a function of the ratio m / n on MNIST data set (digit 3 vs. 7) for $d=784$ and $n=600$.

Validation for bias and variance

- noise: $\varepsilon \sim \mathcal{N}(0,1)$
- $\Sigma_{m}, \widetilde{\Sigma}_{m}$: sample covariance matrices with Monte Carlo sampling

(a) Bias

(b) Variance

Outline

Research overview
Quadrature rules for kernel approximation
Deterministic Version
Stochastic Version
Unified Framework
Experiments

Random features in double descent

Conclusion

Take-away message

(a unified framework for quadrature rules
algorithm $\left\{\begin{array}{l}\text { deterministic: low complexity and approximation error } \\ \text { stochastic: dimension-adaptive feature mapping }\end{array}\right.$ theory: unbiasedness and variance reduction
(high dimensional random features model trained by SGD
findings $\left\{\begin{array}{l}\text { bias-variance decomposition: multiple randomness sources } \\ \text { monotonic decreasing bias and unimodal variance } \\ \text { optimization effect on excess risk }\end{array}\right.$

Future works:

- applications for high dimensional integration
- random features model in deep learning theory

Thanks for your attention!

Q \& A

my homepage http://lfhsgre.org for more information!

NEW: ERC Advanced Grant E-DUALITY
Exploring duality for future data-driven modelling

References I

[1] Salomon Bochner.
Harmonic Analysis and the Theory of Probability.
Courier Corporation, 2005.
[2] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, and Weller Adrian.
Rethinking attention with performers.
In International Conference on Learning Representations, 2021.
[3] Florian Heiss and Viktor Winschel.
Likelihood approximation by numerical integration on sparse grids.
Journal of Econometrics, 144(1):62-80, 2008.
[4] Philip J. Davis and Philip Rabinowitz.
Methods of numerical integration.
Courier Corporation, 2007.
[5] Alan Genz and Bradley D Keister.
Fully symmetric interpolatory rules for multiple integrals over infinite regions with gaussian weight.
Journal of Computational and Applied Mathematics, 71(2):299-309, 1996.

References II

[6] Aicke Hinrichs and Erich Novak.
Cubature formulas for symmetric measures in higher dimensions with few points.
Mathematics of computation, 76(259):1357-1372, 2007.
[7] Ali Rahimi and Benjamin Recht.
Random features for large-scale kernel machines.
In Advances in Neural Information Processing Systems, pages 1177-1184, 2007.
[8] Haim Avron, Vikas Sindhwani, Jiyan Yang, and Michael W. Mahoney. Quasi-Monte Carlo feature maps for shift-invariant kernels.
Journal of Machine Learning Research, 17(1):4096-4133, 2016.
[9] Felix Xinnan Yu, Ananda Theertha Suresh, Krzysztof Choromanski, Daniel Holtmannrice, and Sanjiv Kumar. Orthogonal random features.
In Advances in Neural Information Processing Systems, pages 1975-1983, 2016.
[10] Krzysztof M. Choromanski, Mark Rowland, and Adrian Weller.
The unreasonable effectiveness of structured random orthogonal embeddings.
In Advances in Neural Information Processing Systems, pages 219-228, 2017.

References III

[11] Tri Dao, Christopher M. De Sa, and Christopher Ré.
Gaussian quadrature for kernel features.
In Advances in neural information processing systems, pages 6107-6117, 2017.
[12] Marina Munkhoeva, Yermek Kapushev, Evgeny Burnaev, and Ivan Oseledets.
Quadrature-based features for kernel approximation.
In Advances in Neural Information Processing Systems, pages 9147-9156, 2018.
[13] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning practice and the classical bias-variance trade-off. the National Academy of Sciences, 116(32):15849-15854, 2019.

[^0]: ${ }^{1}$ Rahimi A, Recht B. Random features for large-scale kernel machines, NeurIPS2007. (the test-of-time award in NeurIPS2017)

[^1]: ${ }^{2} \mathrm{Yu}$ et al. Orthogonal random features. NeurIPS2016.
 ${ }^{3}$ Munkhoeva et al. Quadrature-based features for kernel approximation. NeurIPS2018.

[^2]: Conclusion

[^3]: ${ }^{1}$ A refined decomposition on variance is conducted by sources of randomness on data sampling, initialization, label noise to possess each term (d'Ascoli et al., 2020b) or their full decomposition in (Adlam \& Pennington, 2020; Lin \& Dobriban, 2021).

