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Research Statement
The role of over-parameterization in machine learning

- a function space theory view

Statistical machine learning (ML) has enjoyed immense practical success in recent years, espe-
cially deep learning in the era of big data. Rich mathematical theory explaining a flurry empirical
results can help drive further advances but current theoretical understanding on ML models that
can represent the data with the desired accuracy is still incomplete. For example, modern neural
networks (NNs) work in an over-parameterized regime, where the number of parameters is much
larger than the number of samples. They can perfectly fit the (noisy) training data but still gener-
alize well, which goes against the conventional wisdom in classical learning theory.

My research aims to fill in the gap in the ML theory community from the perspective of function
space theory, which focuses on which hypothesis space is suitable for learning at first, and then study
generalization properties of machine learning models from supervised learning to reinforcement
learning (RL).

The commonly used function space in learning theory is the reproducing kernel Hilbert space
(RKHS), which provides the ability to approximate functions by nonparametric functional repre-
sentations. The starting point of my research is based on the fact that RKHS is not large enough.
For instance, to approximate a single ReLU neuron with an ε-approximation error, kernel methods
in RKHS, e.g., neural tangent kernel (NTK) [JGH18] in deep learning theory, require a number
of samples Ω(ε−d), exponential in feature dimensionality d [Bac17], a.k.a., curse of dimensional-
ity (CoD). Accordingly, my research aims to theoretically understand generalization guarantees of
learning in a series of more and more general function spaces as below.

RKHS hyper-RKHS Barron space Besov space

kernel methods hyper-kernel methods two-layer NNs deep NNs

bivariate form variational form smoothness
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Research Statement
From kernel methods to neural networks: Generalization guarantees in a function approximation view

Machine learning (ML) has enjoyed immense practical success in recent years, especially deep
learning in the era of big data. Rich mathematical theory explaining a flurry empirical results
can help drive further advances but current theoretical understanding is still incomplete on the
hypothesis space that can represent the data with the desired accuracy. My research aims to fill
in the gap in the ML theory community from the perspective of function space theory by studying
which hypothesis space is suitable for learning at first.
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The commonly used function space in learn-
ing theory is the reproducing kernel Hilbert
space (RKHS) [Vap95], which provides the abil-
ity to approximate functions by nonparametric
functional representations. The starting point
of my research is based on the fact that RKHS is
not large enough. For instance, to approximate
a single ReLU neuron with an ε-approximation
error, kernel methods in RKHS require a num-
ber of samples Ω(ε−d), exponential in feature
dimensionality d [Bac17], a.k.a., curse of di-
mensionality (CoD). Accordingly, my research
aims to theoretically understand generalization
guarantees of learning with kernel methods and NNs in a series of more and more general function
spaces as below.

RKHS hyper-RKHS Barron space Besov space

kernel methods hyper-kernel methods two-layer NNs deep NNs

bivariate form variational form smoothness

It covers various scenarios, including kernel methods in hyper-RKHS for kernel learning, random
features for kernel approximation, two-layer NNs in Barron space [EMW21] with generalization
guarantees, and deep NNs in Besov space [Suz19] for Q-function approximation in deep RL.

My research interests begin with RKHS associated with kernel methods, then center around
kernel approximation for scalability via random Fourier features (RFFs) [RR07b], and focus on
generalization guarantees of over-parameterized models beyond classical learning theory, as well
as theoretical understanding neural networks (NNs) from the perspective of neural tangent kernel
(NTK) [JGH18], under the unifying framework in Fig. . My research covers several topics from
kernel methods to neural networks, including kernel learning, kernel approximation, double descent
of over-parameterized models, and reinforcement learning theory in function approximation.

1 Current achievements
My research endeavour along this line has led to several scientific contributions at the flagship jour-
nals and conferences in machine learning. Here I give an overview of my representative work in re-
cent years, including learning in hyper-RKHS [LSH+21, JMLR21], scalability via RFFs [LHCS21a,
TPAMI2021], double descent of RFFs [LSC22, NeurIPS22], and deep neural function approximation
in RL [LVC22, NeurIPS22].

Learning in hyper-RKHS: As mentioned before, RKHS is not large enough, and the associated
kernel is not easily selected in kernel learning. This motivates me to consider a much larger space
than RKHS, i.e., hyper-RKHS [OSW05]. Different from RKHS, every element in hyper-RKHS is a
kernel function, and the hyper-kernel is a function of four arguments, allowing for significant model
flexibility from a broad class, see the difference on the reproducing property as below.

RKHS: f(x) = ⟨f, k(x, ·)⟩H, ∀f ∈ H hyper-RKHS: k(x,x′) = ⟨k, k((x,x′), ·)⟩H, k ∈ H
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Figure 1: An overview from kernel
methods to neural networks.

It covers several topics in my research from kernel methods to
neural networks, centering around theoretical understanding
generalization guarantees of machine learning models, espe-
cially over-parameterized models, provably and efficiently. My
research from current achievements to future plan includes
kernel learning, kernel approximation, double descent of over-
parameterized models, and reinforcement learning theory in
function approximation, see the unifying framework in Fig. 1.

To be specific, 1) kernel methods in hyper-RKHS for ker-
nel learning; 2) kernel approximation for scalability via ran-
dom Fourier features (RFFs); 3) focus on generalization guar-
antees of over-parameterized models beyond classical learn-
ing theory, including two-layer NNs in Barron space, deep
NNs via neural tangent kernel (NTK) in RKHS, as well as
Besov space for Q-function approximation in deep reinforce-
ment learning (RL). Besides, some theoretical-oriented topics with strong application background
by student projects I co-supervised, e.g., robustness, neural architecture search can be also studied
under our framework 1 in a systematical way.

My current research statement focuses on the following four fundamental questions from theory
to application:

• Q1: What is generalization guarantees beyond RKHS?

• Q2: Why over-parameterized NNs generalize well under SGD training?

• Q3: Over-parameterization helps or hurts robustness in NNs?

• Q4: How does deep RL work well for function approximation beyond “linear” regime?

Current achievements: My research is able to understand what is the role of over-parameterization
from kernel methods to neural networks on robustness, generalization, function approximation, cen-
tering around previous three questions. This leads to several scientific contributions at the flagship
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journals and conferences in machine learning. Some of these research outputs have already pre-
sented on ICASSP 2023 tutorial entitled “Neural networks: the good, the bad, the ugly” and CVPR
2023 tutorial entitled “Deep learning theory for vision researchers.

RKHS: f(x) = ⟨f, k(x, ·)⟩H, ∀f ∈ H hyper-RKHS: k(x,x′) = ⟨k, k((x,x′), ·)⟩H, k ∈ H

• A1: Our work [LSH+21] generalizes regularized regression problems with bivariate forms en-
dowed by hyper-RKHS, and provides generalization guarantees of regularized regression al-
gorithms in hyper-RKHS. The convergence rate of the excess risk is proved to be the same with
the standard RKHS even though hyper-RKHS is much larger than RKHS, which answered Q1.
Our analysis is non-trivial due to the non-trivial independence of pairwise samples, and thus
our proof technique can be also beneficial to pairwise learning for non-iid samples. Besides
the theoretical contributions, our framework [LSH+21] is able to provide a promising solution
to How to learn an underlying similarity function from a pre-given data-specific matrix? which
extensively exists in kernel learning, manifold learning, and out-of-sample extension [BPV04].

• A2: Regarding generalization of over-parameterized models, our work [LSC22] aims to under-
stand over-parameterized two-layer neural networks trained by stochastic gradient descent
(SGD), which coincides with practical neural networks training, and accordingly bridges the
theoretical gap of previous work depending on the closed-form solution. Technically, our analy-
sis shows how to cope with multiple randomness sources of initialization, label noise, and data
sampling (as well as stochastic gradients) with no closed-form solution. Theoretically, our re-
sults are able to characterize the double descent behavior by the unimodality of variance and
monotonic decrease of bias. Our finding shows that the constant step-size SGD setting in-
curs no loss in convergence rate when compared to the exact minimum-norm interpolator, as
a theoretical justification of using SGD in practice, which answered Q2.
In fact, the double descent theory can be extended by our work [LLS21] on high-dimensional
kernel regression, of which the curve can be unimodal, monotonically decreasing, and double
descent under different regularization schemes.

• A3: Based on our generalization results, we are able to address some problems in practice. For
example, regarding robustness of neural networks, a large numbers of literature in this com-
munity have a contradicting conclusion on the fundamental question: over-parameterization
helps or hurts robustness? Our work [ZLCC22] aims to investigate this apparent contradiction
in theory, and to close the gap as much as possible.
We demonstrate the good in width, the bad depth, the ugly in initialization regarding the
average robustness of DNNs: in the over-parameterized regime, width helps robustness (good);
depth (bad) helps robustness under LeCun initialization but hurts the robustness in both He-
initialization and NTK initialization (ugly).

• A4: Apart from robustness, we are able to analyse the function approximation in deep RL be-
yond “linear” regime, e.g., NTK, Eluder dimension. This scheme is powerful in practice, e.g.,
deep Q-network (DQN) using DNNs for function approximation. To bridge the large theory-
practice gap, our work [LVC22] study the value iteration algorithm with deep neural func-
tion approximation in general function spaces, equipped with the ϵ-greedy exploration, which
broadly captures the key features of DQN. Our analysis framework is based on DNNs (as well
as two-layer neural networks) where the target Q function lies in the Besov space [Suz19]
or the Barron space [EMW21], respectively, to fully capture the properties of Q-functions in
terms of smoothness..
To answer Q4 as before mentioned, technically, our analysis reformulates the temporal differ-
ence error in an L2(dµ)-integrable space over a certain averaged measure µ, and then trans-
forms the estimation to a generalization guarantees problem under the non-iid setting. The-
oretically, our results demonstrate that the sublinear regret can be achieved for deep neu-
ral function approximation under the ϵ-greedy exploration with reasonably finite width and
depth in practice. Besides, the relationship between the problem-dependent smoothness of Q-
function and regret bounds is also developed. These results could also motivate practitioners
to consider different architectures of implementations of deep RL.
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Future directions: In the work mentioned above, I have made contributions to several im-
portant directions of over-parameterized models in statistical learning theory and reinforcement
learning theory. In fact, in each direction, we are just getting started and there is far more to
be done. Below I describe two new directions I am eager to explore. They address topics of wide
interest, fit well with my expertise, and inspire multidisciplinary collaboration.

Learning with neural networks beyond RKHS: As mentioned before, RKHS is not a large
function space and kernel estimator suffers from CoD. From a functional perspective, one key issue
corresponds to what norm can be defined and controlled on the functions defined by neural net-
works, and what suitable function space is for learning via norm capacity based neural networks.
Characterizing the “right” function spaces corresponding to neural networks can provide a way to
understand their properties, which is a fundamental and significant problem. This would moti-
vate us for better understanding DNNs in function class, training dynamics, and generalization
properties.

Efficient function approximation algorithms in RL: General function approximation in
RL, particularly theory for deep RL, continues an interesting and unsolved question. Famous theo-
ries of function approximation, such as linear mixture model, bilinear class, Bellman rank, Eluder
dimension, and low Bellman Eluder dimension, all lack tangible complexity upper bounds for neu-
ral network function approximations. How to design both statistically and computationally efficient
RL algorithms in general function approximation is a longstanding question in this community.
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