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Research Overview: Kernel approximation

complex in low dimensions simple in higher dimensions

feature mapping

separating
hyperplane

linear non‐separable linear separable

Scalability of kernel methods: n-by-n kernel matrix.
Solution: approximate the kernel by a low-rank representation
▶ Nyström approximation: approximate the kernel matrix
▶ Random Fourier features1: approximate the kernel function

1Rahimi A, Recht B. Random features for large-scale kernel machines, NeurIPS2007. (the test-of-time award in NeurIPS2017)
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Research Overview: Random Fourier features

k(x, x′) = 〈ϕ(x), ϕ(x′)〉H ≈ φ>(x)φ(x′) ,

where φ(x) : Rd → Rs is an explicit feature mapping

Bochner’s theorem [1]
For a shift-invariant k(x, x′) = k(x − x′) and positive definite kernel,

k(x, x′) =
∫
Rd

p(ω)exp
(

iω>(x − x′)
)

dω

≈
1
s

s∑
j=1

exp(iω>
j x) exp(iω>

j x′)∗ = φ(x)>φ(x′)

the explicit feature mapping:

φ(x) :=
1

√
s

[
exp(−iω>

1 x), · · · , exp(−iω>
s x)]>.
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Research Overview: Neural network view
RF model: a two-layer, (infinite)-width, fully-connected neural network

k
(

x, x′
)

= Eω∼N (0,Id)[σ(ω>x)σ(ω>x′)]

𝑊𝑖𝑗 ~𝑁ሺ0,1ሻ 

𝑾 ∈ ℝ𝑠ൈ𝑑  
𝒙 

𝒛 ൌ 𝜎ሺ𝑾𝒙ሻ 

𝑦ො ൌ 𝑓ሺ𝜶T𝒛ሻ 

▶ Gaussian kernel: σ(x) = [cos(x), sin(x)]>
▶ the 1st-order arc-cosine kernel: σ(x) = max{0, x}
▶ soft-max in attention: σ(x) = exp(x)
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Research Overview: Applied to Linearized Attention in Transformers

self attention
Attention(Q, K, V) = softmax(QK>)︸                 ︷︷                 ︸

:=A

V ≈ Q′K′>V ,

where Aij = k(qi, kj) = E[σ(qi)>σ(kj)]

Published as a conference paper at ICLR 2021

where tril(·) returns the lower-triangular part of the argument matrix including the diagonal. As
discussed in (Vaswani et al., 2017), unidirectional attention is used for autoregressive generative
modelling, e.g. as self-attention in generative Transformers as well as the decoder part of Seq2Seq
Transformers.

We will show that attention matrix A can be approximated up to any precision in time O(Ld2 log(d)).
For comparison, popular methods leveraging sparsity via Locality-Sensitive Hashing (LSH) tech-
niques (Kitaev et al., 2020) have O(Ld2 logL) time complexity. In the main body of the paper we
will describe FAVOR+ for bidirectional attention. Completely analogous results can be obtained for
the unidirectional variant via the mechanism of prefix-sums (all details in the Appendix B.1).

2.2 GENERALIZED KERNELIZABLE ATTENTION

FAVOR+ works for attention blocks using matrices A ∈ RL×L of the form A(i, j) = K(q>i ,k
>
j ),

with qi/kj standing for the ith/jth query/key row-vector in Q/K and kernel K : Rd × Rd → R+

defined for the (usually randomized) mapping: φ : Rd → Rr+ (for some r > 0) as:

K(x,y) = E[φ(x)>φ(y)]. (3)

We call φ(u) a random feature map for u ∈ Rd. For Q′,K′ ∈ RL×r with rows given as φ(q>i )>

and φ(k>i )> respectively, Equation 3 leads directly to the efficient attention mechanism of the form:

Âtt↔(Q,K,V) = D̂−1(Q′((K′)>V)), D̂ = diag(Q′((K′)>1L)). (4)

Here Âtt↔ stands for the approximate attention and brackets indicate the order of computations. It is
easy to see that such a mechanism is characterized by space complexity O(Lr + Ld+ rd) and time
complexity O(Lrd) as opposed to O(L2 + Ld) and O(L2d) of the regular attention (see also Fig. 1).

Figure 1: Approximation of the regular attention mechanism AV (before D−1-renormalization) via (random)
feature maps. Dashed-blocks indicate order of computation with corresponding time complexities attached.

The above scheme constitutes the FA-part of the FAVOR+ mechanism. The remaining OR+ part
answers the following questions: (1) How expressive is the attention model defined in Equation 3,
and in particular, can we use it in principle to approximate regular softmax attention ? (2) How do
we implement it robustly in practice, and in particular, can we choose r � L for L� d to obtain
desired space and time complexity gains? We answer these questions in the next sections.

2.3 HOW TO AND HOW NOT TO APPROXIMATE SOFTMAX-KERNELS FOR ATTENTION

It turns out that by taking φ of the following form for functions f1, ..., fl : R → R, function
g : Rd → R and deterministic vectors ωi or ω1, ..., ωm

iid∼ D for some distribution D ∈ P(Rd):

φ(x) =
h(x)√
m

(f1(ω>1 x), ..., f1(ω>mx), ..., fl(ω
>
1 x), ..., fl(ω

>
mx)), (5)

we can model most kernels used in practice. Furthermore, in most cases D is isotropic (i.e. with
pdf function constant on a sphere), usually Gaussian. For example, by taking h(x) = 1, l = 1 and
D = N (0, Id) we obtain estimators of the so-called PNG-kernels (Choromanski et al., 2017) (e.g.
f1 = sgn corresponds to the angular kernel). Configurations: h(x) = 1, l = 2, f1 = sin, f2 = cos
correspond to shift-invariant kernels, in particular D = N (0, Id) leads to the Gaussian kernel Kgauss

(Rahimi & Recht, 2007). The softmax-kernel which defines regular attention matrix A is given as:

3

Figure: Approximation of self-attention. source: [2].

▶ soft-max in attention: exp(x>x′) = Eω∼N (0,Id)

[
exp

(
ω>x − ‖x‖2

2
2

)
exp

(
ω>x′ − ‖x′‖2

2
2

)]
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Research Overview: Taxonomy

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

data-independent



i) Monte Carlo sampling


acceleration

{
structural: Fastfood [11], P-model [89], SORF [72]
circulant: SCRF [90]

variance reduction

{
`2 normalization: NRFF [91]
orthogonal constraint: ORF [72], ROM [92]

ii) Quasi-Monte Carlo sampling


QMC [1]
structural spherical feature: SSF [93]
moment matching: MM [94]

iii) Quadrature rules

{
deterministic quadrature rules: GQ, SGQ [74]
stochastic spherical-radial rule: SSR [12]

data-dependent



leverage score sampling: LSS-RFF [57], fast leverage score approximation [95], [96], [97]

re-weighted random features


weighted random features: [98], [99] for RFF, [73] for QMC, [74] for GQ
kernel alignment: KA-RFF [53] and KP-RFF [54]
compressed low-rank approximation: CLR-RFF [55]

kernel learning by random features


one-stage: [100] via generative models

two-stage

{
joint optimization: [101], [102]
spectral learning in mixture models: [103], [104], [105], [106]

others: quantization [107]; doubly stochastic [34]

k(x− x′) =
∫
Rd p(ω) exp

(
iω>(x− x′)

)
dω

k(x− x′) =
∫
[0,1]dexp

(
i(x−x′)>Φ−1(t)

)
dt

k(x−x′) =
∏d
j=1

(∫∞
−∞ pj

(
ω(j)

)
exp

(
iω(j)(x(j) − x′(j))

)
dω(j)

)
k(x− x′) = (2π)−d/2

∫
Ud

∫∞
0 e−

r2

2 |r|d−1g(ru)drdu

k(x,x′) =
∫
Rd q(ω)p(ω)

q(ω) exp
(

iω>(x− x′)
)

dw

i) Monte Carlo sampling
• variance reduction
• acceleration

ii) Quasi-Monte Carlo sampling
• QMC
• SSF
• MM

iii) Quadrature rules
• GQ, SGQ
• SSR

data-dependent
• random features

selection/learning
• leverage score

Figure 1. A taxonomy of representative random features based algorithms.

features, and hence differ from the other random features selection
methods mentioned above, which assume that the candidate features
are generated from a pre-given distribution and only learn the
weights of these features. Representative approaches for kernel
learning involve a one-stage [100] or two-stage procedure [101],
[102], [103], [104], [105], [106]. From a more general point of view,
the aforementioned re-weighted random features selection methods
can also be classified into this class. Since these methods belong to
the broad area of kernel learning instead of kernel approximation,
we do not detail them in this survey.

Besides the above three main categories, other data-dependent
approaches include the following. i) Quantization random features
[107]: Given a memory budget, this method quantizes RFF for
Gaussian kernel approximation. A key observation from this work
is that random features achieve better generalization performance
than Nyström approximation [110] under the same memory space.
ii) Doubly stochastic random features [34]: This method uses
two sources of stochasticity, one from sampling data points by
stochastic gradient descent (SGD), and the other from using RFF
to approximate the kernel. This scheme has been used for Kernel
PCA approximation [111], and can be further extended to triply
stochastic scheme for multiple kernel approximation [112].

3 DATA-INDEPENDENT ALGORITHMS

In this section, we discuss data-independent algorithms in a
unified framework based on the transformation matrix W , that
plays an important role in constructing the mapping ϕ(·) in
Eq. (7) and determining how well the estimated kernel converges
to the actual kernel. Table 2 reports various random features
based algorithms in terms of the class of kernels they apply
to (in theory) as well as their space and time complexities for
computing the feature mapping Wx for a given x ∈ X . In
Table 2, we also summarize the variance reduction properties of
these algorithms, i.e., whether the variance of the resulting kernel
estimator is smaller than the standard RFF. Before proceeding,
we introduce some notations and definitions. When discussing
a stationary kernel function k(x,x′) = k(x − x′), we use
the convenient shorthands τ := x − x′ and τ := ‖τ‖2.
For a random features algorithm A with frequencies {ωi}si=1

sampled from a distribution µ(·), we define its expectation
E(A) := E[k(τ )] = Eω∼µ

[
1/s

∑s
i=1 cos(ω>i τ )

]
and variance

V[A] := V[k(τ )] = V
[

1
s

∑s
i=1 cos(ω>τ )

]
.

Figure: Taxonomy of random features based algorithms2.

2Fanghui Liu, Xiaolin Huang, Yudong Chen, and Johan A.K. Suykens. Random Features for Kernel Approximation: A Survey on Algorithms,
Theory, and Beyond. TPAMI2021.
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Background: Double descent

over-parameterized models, e.g., neural networks, random features
▶ high dimensions: large n and d

▶ abnormal phenomena: training error can be zero but still generalize well

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd→C of the form

h(x )=

N∑
k=1

akφ(x ; vk ) where φ(x ; v):=e
√
−1〈vk ,x〉,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N →∞, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H∞. While it is possible to directly use
H∞ [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd ×R, we find the predictor hn,N ∈
HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

∑n
i=1(h(xi)− yi)

2 over all functions h ∈HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm ‖h‖H∞ , which is generally
difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

Figure: Bias-variance trade-off [3] (Belkin et al. PNAS2019).
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Research Overview: Motivation

▶ interplay between optimization and excess risk: trained by SGD
▶ bias-variance decomposition for understanding multiple randomness sources
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On the Double Descent of Random Features Models Trained with SGD

The outline of the appendix is stated as follows.

• Section A summarizes representative results on random features regarding to double descent under various settings.

• Section B provides the proofs of lemmas in Section 3.2 on statistical properties of Σm and Σ̃m.

• Appendix C introduces preliminaries on PSD operators in stochastic approximation.

• Section D provides estimation for several typical integrals that are needed for our proof.

• Section E gives error bounds for Bias.

• In Section F, we provide the error bounds for Variance.

A. Comparisons with previous work
Here we summarize various representative approaches in Table 1 according to the used data assumption, the type of solution,
and the derived results.

Table 1. Comparison of problem settings on analysis of high dimensional random features on double descent.

data assumption solution result

(Hastie et al., 2019) Gaussian closed-form variance↗↘
(Ba et al., 2020) Gaussian GD variance↗↘

(Mei & Montanari, 2019) i.i.d on sphere closed-form variance, bias↗↘
(d’Ascoli et al., 2020a) Gaussian closed-form refined 2

(Gerace et al., 2020) Gaussian closed-form ↗↘
(Adlam & Pennington, 2020) Gaussian closed-form refined

(Dhifallah & Lu, 2020) Gaussian closed-form ↗↘
(Hu & Lu, 2020) Gaussian closed-form ↗↘
(Liao et al., 2020) general closed-form ↗↘

(Lin & Dobriban, 2021) isotropic features with finite moments closed form refined

(Li et al., 2021) correlated features with polynomial decay on Σd closed form interpolation learning

Ours (at least) sub-exponential data SGD variance↗↘, bias↘
1 A refined decomposition on variance is conducted by sources of randomness on data sampling, initialization, label noise to

possess each term (d’Ascoli et al., 2020b) or their full decomposition in (Adlam & Pennington, 2020; Lin & Dobriban, 2021).

We mainly discuss the used assumption on data distribution here. It can be found that, most papers assume the data to be
Gaussian or uniformly distributed on the sphere. The following papers admit weaker assumption on data. Given a correlated
features model that is commonly used in high dimensional statistics (Hastie et al., 2019):

x = Σ
1
2

d t , E[ti] = 0,V[ti] = 1, with Σd := Ex[xx>] , (12)

where t ∈ Rd has i.i.d entries ti (i = 1, 2, . . . , d) with zero mean and unit variance. In (Li et al., 2021), they further require
that each entry is i.i.d sub-Gaussian and Σd admits polynomial decay on eigenvalues. Lin & Dobriban (2021) consider
isotropic features with finite moment, i.e., taking Σd := I in Eq. (12) and E[t8+η

i ] <∞ for any arbitrary positive constant
η > 0. Our model holds for sub-Gaussian and sub-exponential data (at least), and thus the used data assumption 4 is weaker
than them. In (Liao et al., 2020), it makes no assumption on data distribution but requires that test data “behave" statistically
like the training data by concentrated random vectors. Indeed, their data assumption is weaker than ours, but their analysis
framework builds on the exact closed-form solution from random matrix theory. Instead, we focus on the SGD setting and
thus take a unified perspective on optimization and generalization.

B. Results on covariance operators

In this section, we present the proofs of Lemma 1, 2, 3, 4 on statistical properties of Σm and Σ̃m.
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Problem settings: Random features regression model

data: y = fρ(x) + ε

▶ training data: {(xi, yi)}n
i=1 ∼ ρ

Assumption: sub-exponential data and ‖x‖2
2 ∼ O(d)

▶ target function: fρ(x) =
∫

Y
y dρ(y | x)

▶ noise: E(ε) = 0 and E(ε2) = τ2

function space
define the random features mapping φ(x) := 1√

m
σ(Wx/

√
d),

H :=
{

f ∈ L2
ρX

∣∣∣ f(x) = 〈θ, φ(x)〉
}

, Wij ∼ N (0, 1)

covariance operator: Σm :=
∫

X
[φ(x) ⊗ φ(x)]dρX(x)

expected covariance operator: Σ̃m := Ex,W[φ(x) ⊗ φ(x)]

RFF with double descent | Fanghui Liu, fanghui.liu@epfl.ch Slide 11/ 24



Problem settings: averaged SGD under adaptive step-size setting

θt = θt−1 + γt[yt − 〈θt−1, φ(xt)〉]φ(xt), t = 1, 2, . . . n ,

▶ averaged output: θ̄n := 1
n

∑n−1
t=0 θt =⇒ f̄n = 〈φ(·), θ̄n〉

▶ adaptive step-size: γt := γ0t−ζ , ζ ∈ [0, 1)
▶ optimal solution: f∗ = arg minf∈H ‖f − fρ‖2

L2
ρX

▶ averaged excess risk: E‖f̄n − f∗‖2
L2

ρX

= EX,W,ε〈f̄n − f∗, Σm(f̄n − f∗)〉

RFF with double descent | Fanghui Liu, fanghui.liu@epfl.ch Slide 12/ 24



Assumptions

▶ boundedness of f∗: ‖f∗‖H < ∞
▶ high dimension: c ⩽ {d/n, m/n} ⩽ C, ‖x‖2

2 ∼ O(d), Σd := Ex[x ⊗ x] with ‖Σd‖2 < ∞
▶ activation function: σ(·): Lipschitz continuous
▶ noise condition: Ξ := Ex[ε2φ(x) ⊗ φ(x)] ≼ τ2Σm.

uniformly bounded noise, sub-Gaussian noise
▶ fourth moment condition:

for any PSD operator A, we have EW[ΣmAΣm] ≼ r′EW[Tr(ΣmA)Σm] ≼ rTr(Σ̃mA)Σ̃m.
1) The special case A := I can be proved.
2) holds for sub-Gaussian/exponential data.
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Properties of covariance operators

σ(·) : R 7→ R Lipschitz continuous
covariance operator Σm := Ex[φ(x) ⊗ φ(x)]
expected covariance operator Σ̃m := Ex,W[φ(x) ⊗ φ(x)]

eigenvalue of Σ̃m

the same diagonal/non-diagonal elements: O(1/m)
two distinct eigenvalues: λ̃1 ∼ O(1), λ̃2 ∼ O(1/m)

sub-exponential random variables
‖Σm‖2, ‖Σm − Σ̃m‖2, Tr(Σm), and

∥∥Σ̃−1
m EW(Σ2

m)
∥∥

2
with O(1) sub-exponential norm order
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Bias-variance decomposition

Define ηt := ft − f∗, we have

ηt = [I − γtφ(xt) ⊗ φ(xt)](ft−1 − f∗) + γtεtφ(xt) ,

ηbias
t = [I − γtφ(xt) ⊗ φ(xt)]ηbias

t−1 , ηbias
0 = f∗ ,

ηvar
t = [I − γtφ(xt) ⊗ φ(xt)]ηvar

t−1 + γtεtφ(xt), ηvar
0 = 0 .

Bias-variance decomposition
E‖f̄n − f∗‖2

L2
ρX

= EX,W〈η̄bias
n , Σmη̄bias

n 〉︸                            ︷︷                            ︸
:=Bias

+EX,W,ε〈η̄var
n , Σmη̄var

n 〉︸                            ︷︷                            ︸
:=Variance

.
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Proof framework On the Double Descent of Random Features Models Trained with SGD

excess risk EX,W ,ε〈η̄n,Σmη̄n〉

Bias EX,W 〈η̄biasn ,Σmη̄
bias
n 〉

B3: η̄bXWn
O(nζ−1)

B2: η̄bXn − η̄bXWn{
O(n2(ζ−1)m)

O( 1
m

)

B1: η̄biasn − η̄bXn
O(nζ−1)

Variance EX,W ,ε〈η̄varn ,Σmη̄
var
n 〉

V3: η̄vXWn{
O(nζ−1m)

O(nζ−1 + n
m

)

V2: η̄vXn − η̄vXWn{
O(nζ−1m)

O(1)

V1: η̄varn − η̄vXn{
O(nζ−1m) if m 6 n

O(1) if m > n

Figure 1. The roadmap of proofs.

4. Proof Outline and Discussion
In this section, we first introduce the structure of the proofs
with high level ideas, and then discuss our work with pre-
vious literature in terms of the used techniques and the
obtained results.

4.1. Proof outline

We (partly) disentangle the multiple randomness sources
on the dataX , the random features matrixW , the noise ε,
make full use of statistical properties of covariance operators
Σm and Σ̃m in Section 3.2, and provide the respective (bias
and variance) upper bounds in terms of multiple randomness
sources, as shown in Figure 1.

Bias: To bound Bias, we need some auxiliary notations.
Recall Σm = Ex[ϕ(x)⊗ ϕ(x)] and Σ̃m = Ex,W [ϕ(x)⊗
ϕ(x)], define

ηbXt = (I − γtΣm)ηbXt−1, ηbX0 = f∗ , (8)

ηbXWt = (I − γtΣ̃m)ηbXWt−1, ηbXW0 = f∗ , (9)

with the average η̄bXn := 1
n

∑n−1
t=0 η̄

bX
t and η̄bXWn :=

1
n

∑n−1
t=0 η̄

bXW
t . Accordingly, ηbXt can be regarded as a "de-

terministic" version of ηbiast : we omit the randomness
on X (data sampling, stochastic gradients) by replacing
[ϕ(x)ϕ(x)>] with its expectation Σm. Likewise, ηbXWt is a
deterministic version of ηvXt by replacing Σm with its expec-
tation Σ̃m (randomness on initialization).

By virtue of Minkowski inequality, the Bias can be
decomposed as Bias . B1 + B2 + B3, where
B1 := EX,W

[
〈η̄biasn − η̄bXn ,Σm(η̄biasn − η̄bXn )〉

]
and

B2 := EW

[
〈η̄bXn − η̄bXWn ,Σm(η̄bXn − η̄bXWn )〉

]
and B3 :=

〈η̄bXWn , Σ̃mη̄
bXW
n 〉. Here B3 is a deterministic quantity that

is closely connected to model (intrinsic) bias without any
randomness; while B1 and B2 evaluate the effect of random-
ness from X and W on the bias, respectively. The error
bounds (convergence rates) for them can be directly found
in Figure 1.

To bound B3, we directly focus on its formulation by virtue
of spectrum decomposition and integral estimation. To

bound B2, we have B2 = 1
n2EW

∥∥∥Σ
1
2
m
∑n−1
t=0 (ηbXt −ηbXWt )

∥∥∥2

,

where the key part ηbXt − ηbXWt can be estimated by Lemma 6.
To bound B1, it can be further decomposed as (here we
use inaccurate expression for description simplicity) B1 .∑
t ‖ηbXt − ηbXWt ‖22 +

∑
t EX‖Ht‖2 in Lemma 7, where

Ht−1 := [Σm−ϕ(xt)⊗ϕ(xt)]η
bX
t−1. The first term can be

upper bounded by
∑
t ‖ηbXt − ηbXWt ‖22 . Tr(Σm)nζ‖f∗‖2

in Lemma 8, and the second term admits
∑
t EX‖Ht‖2 .

Tr(Σm)‖f∗‖2 in Lemma 9.

Variance: To bound Variance, we need some auxiliary
notations.

ηvXt := (I − γtΣm)ηvXt−1 + γtεtϕ(xt), ηvX0 = 0 , (10)

ηvXWt := (I − γtΣ̃m)ηvXWt−1 + γtεtϕ(xt), ηvXW0 = 0 , (11)

with the averaged quantities η̄vXn := 1
n

∑n−1
t=0 η̄

vX
t , η̄vXWn :=

1
n

∑n−1
t=0 η̄

vXW
t . Accordingly, ηvXt can be regarded as a "semi-

stochastic" version of ηvart : we keep the randomness due to
the noise εt but omit the randomness onX (data sampling)
by replacing [ϕ(x)ϕ(x)>] with its expectation Σm. Like-
wise, ηvXWt can be regarded as a "semi-stochastic" version of
ηvXt by replacing Σm with its expectation Σ̃m (randomness
on initialization).

By virtue of Minkowski inequality, the Variance can
be decomposed as Variance . V1 + V2 + V3,
where V1 := EX,W ,ε

[
〈η̄varn − η̄vXn ,Σm(η̄varn − η̄vXn )〉

]
,

V2 := EX,W ,ε

[
〈η̄vXn − η̄vXWn ,Σm(η̄vXn − η̄vXWn )〉

]
, and V3 :=

EX,W ,ε〈η̄vXWn ,Σmη̄
vXW
n 〉. Though V1, V2, V3 still interact

the multiple randomness, V1 disentangles some random-
ness on data sampling, V2 discards some randomness on
initialization, and V3 focuses on the "minimal" interaction
between data sampling, label noise, and initialization. The
error bounds for them can be found in Figure 1.

To bound V3, we focus on the formulation of the covari-
ance operator CvXW

t := EX,ε[ηvXWt ⊗ ηvXWt ] in Lemma 10 and

Bias : ηbias
t = [I − γtφ(xt) ⊗ φ(xt)]ηbias

t−1

Define "semi-stochastic" version: ηbX
t = (I − γtΣm)ηbX

t−1, ηbXW
t = (I − γtΣ̃m)ηbXW

t−1,

▶ B1 := EX,W
[
〈η̄bias

n − η̄bX
n , Σm(η̄bias

n − η̄bX
n )〉

]
▶ B2 := EW

[
〈η̄bX

n −η̄bXW
n , Σm(η̄bX

n −η̄bXW
n )〉

]
▶ B3 := 〈η̄bXW

n , Σ̃mη̄bXW
n 〉
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4. Proof Outline and Discussion
In this section, we first introduce the structure of the proofs
with high level ideas, and then discuss our work with pre-
vious literature in terms of the used techniques and the
obtained results.

4.1. Proof outline

We (partly) disentangle the multiple randomness sources
on the dataX , the random features matrixW , the noise ε,
make full use of statistical properties of covariance operators
Σm and Σ̃m in Section 3.2, and provide the respective (bias
and variance) upper bounds in terms of multiple randomness
sources, as shown in Figure 1.

Bias: To bound Bias, we need some auxiliary notations.
Recall Σm = Ex[ϕ(x)⊗ ϕ(x)] and Σ̃m = Ex,W [ϕ(x)⊗
ϕ(x)], define

ηbXt = (I − γtΣm)ηbXt−1, ηbX0 = f∗ , (8)

ηbXWt = (I − γtΣ̃m)ηbXWt−1, ηbXW0 = f∗ , (9)

with the average η̄bXn := 1
n

∑n−1
t=0 η̄

bX
t and η̄bXWn :=

1
n

∑n−1
t=0 η̄

bXW
t . Accordingly, ηbXt can be regarded as a "de-

terministic" version of ηbiast : we omit the randomness
on X (data sampling, stochastic gradients) by replacing
[ϕ(x)ϕ(x)>] with its expectation Σm. Likewise, ηbXWt is a
deterministic version of ηvXt by replacing Σm with its expec-
tation Σ̃m (randomness on initialization).

By virtue of Minkowski inequality, the Bias can be
decomposed as Bias . B1 + B2 + B3, where
B1 := EX,W

[
〈η̄biasn − η̄bXn ,Σm(η̄biasn − η̄bXn )〉

]
and

B2 := EW

[
〈η̄bXn − η̄bXWn ,Σm(η̄bXn − η̄bXWn )〉

]
and B3 :=

〈η̄bXWn , Σ̃mη̄
bXW
n 〉. Here B3 is a deterministic quantity that

is closely connected to model (intrinsic) bias without any
randomness; while B1 and B2 evaluate the effect of random-
ness from X and W on the bias, respectively. The error
bounds (convergence rates) for them can be directly found
in Figure 1.

To bound B3, we directly focus on its formulation by virtue
of spectrum decomposition and integral estimation. To

bound B2, we have B2 = 1
n2EW

∥∥∥Σ
1
2
m
∑n−1
t=0 (ηbXt −ηbXWt )

∥∥∥2

,

where the key part ηbXt − ηbXWt can be estimated by Lemma 6.
To bound B1, it can be further decomposed as (here we
use inaccurate expression for description simplicity) B1 .∑
t ‖ηbXt − ηbXWt ‖22 +

∑
t EX‖Ht‖2 in Lemma 7, where

Ht−1 := [Σm−ϕ(xt)⊗ϕ(xt)]η
bX
t−1. The first term can be

upper bounded by
∑
t ‖ηbXt − ηbXWt ‖22 . Tr(Σm)nζ‖f∗‖2

in Lemma 8, and the second term admits
∑
t EX‖Ht‖2 .

Tr(Σm)‖f∗‖2 in Lemma 9.

Variance: To bound Variance, we need some auxiliary
notations.

ηvXt := (I − γtΣm)ηvXt−1 + γtεtϕ(xt), ηvX0 = 0 , (10)

ηvXWt := (I − γtΣ̃m)ηvXWt−1 + γtεtϕ(xt), ηvXW0 = 0 , (11)

with the averaged quantities η̄vXn := 1
n

∑n−1
t=0 η̄

vX
t , η̄vXWn :=

1
n

∑n−1
t=0 η̄

vXW
t . Accordingly, ηvXt can be regarded as a "semi-

stochastic" version of ηvart : we keep the randomness due to
the noise εt but omit the randomness onX (data sampling)
by replacing [ϕ(x)ϕ(x)>] with its expectation Σm. Like-
wise, ηvXWt can be regarded as a "semi-stochastic" version of
ηvXt by replacing Σm with its expectation Σ̃m (randomness
on initialization).

By virtue of Minkowski inequality, the Variance can
be decomposed as Variance . V1 + V2 + V3,
where V1 := EX,W ,ε

[
〈η̄varn − η̄vXn ,Σm(η̄varn − η̄vXn )〉

]
,

V2 := EX,W ,ε

[
〈η̄vXn − η̄vXWn ,Σm(η̄vXn − η̄vXWn )〉

]
, and V3 :=

EX,W ,ε〈η̄vXWn ,Σmη̄
vXW
n 〉. Though V1, V2, V3 still interact

the multiple randomness, V1 disentangles some random-
ness on data sampling, V2 discards some randomness on
initialization, and V3 focuses on the "minimal" interaction
between data sampling, label noise, and initialization. The
error bounds for them can be found in Figure 1.

To bound V3, we focus on the formulation of the covari-
ance operator CvXW

t := EX,ε[ηvXWt ⊗ ηvXWt ] in Lemma 10 and

Variance : ηvar
t = [I − γtφ(xt) ⊗ φ(xt)]ηvar

t−1 + γtεtφ(xt)

Define "semi-stochastic" version: ηvX
t := (I − γtΣm)ηvX

t−1 + γtεtφ(xt) , ηvXW
t := (I − γtΣ̃m)ηvXW

t−1 + γtεtφ(xt)

▶ V1 := EX,W,ε

[
〈η̄var

n − η̄vX
n , Σm(η̄var

n − η̄vX
n )〉

]
▶ V2 := EX,W,ε

[
〈η̄vX

n −η̄vXW
n , Σm(η̄vX

n −η̄vXW
n )〉

]
▶ V3 := EX,W,ε〈η̄vXW

n , Σmη̄vXW
n 〉

RFF with double descent | Fanghui Liu, fanghui.liu@epfl.ch Slide 17/ 24



Results: error bounds

Theorem
Under the above-mentioned assumptions, if the step-size γt := γ0t−ζ with ζ ∈ [0, 1) satisfies γ0 < C, we have

Bias ≲
γ0r′nζ−1√

E[1 − γ0r′Tr(Σm)]4
‖f∗‖2 ∼ O

(
nζ−1

)
.

Variance ≲
γ0r′τ2√

E[1 − γ0r′Tr(Σm)]2

{
mnζ−1, if m ⩽ n

γ0τ2, if m > n

∼
{

O
(

mnζ−1
)

, if m ⩽ n

O (1) , if m > n .
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Experiments on MNIST
Gaussian kernel k(x, x′) = exp

(
− ‖x−x′‖2

2
2d

)

(a) SGD vs. min-norm solution (b) step-size

Figure: Test MSE (mean±std.) of RF regression as a function of the ratio m/n on MNIST data set (digit 3 vs. 7) for d = 784
and n = 600.
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Validation for bias and variance

▶ noise: ε ∼ N (0, 1)
▶ Σm, Σ̃m: sample covariance matrices with Monte Carlo sampling

(a) Bias (b) Variance
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Take-away message


high dimensional random features model trained by SGD

findings


expected covariance operator Σ̃m has only two distinct eigenvalues
bias-variance decomposition: multiple randomness sources
monotonic decreasing bias and unimodal variance
optimization effect on excess risk: constant step-size SGD vs. min-norm solution

Future works:
▶ SGD: implicit bias/regularization
▶ function space, high dimensions
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Thanks for your attention!

Q & A
my homepage http://lfhsgre.org for more information!Acknowledgements (3)
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