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Today: “Basic” robust machine learning

min
x∈X

max
y∈Y

Φ(x,y)

◦ A seemingly simple optimization formulation

◦ Critical in machine learning with many applications

I Adversarial examples and training
I Generative adversarial networks
I Robust reinforcement learning
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Warm up: Flexibility of the template

Φ? = min
x∈X

max
y∈Y

Φ(x,y) (argmin, argmax→ x?,y?)

f? = min
x:x∈X

f(x) (argmin→ x?)

◦ (eula) In the sequel,

I the set X is convex

I all convergence characterizations are with feasible iterates xk ∈ X

I L-smooth means ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ X

I ∇ may refer to the generalized subdifferential

Deep learning theory for computer vision | Volkan Cevher, Fanghui Liu, Grigorios Chyrsos; firstname.lastname@epfl.ch Slide 5/ 81



Warm up: Flexibility of the template

Φ? = min
x∈X

max
y:y∈Y

Φ(x,y)︸              ︷︷              ︸
f(x)

(argmin, argmax→ x?,y?)

f? = min
x:x∈X

f(x) (argmin→ x?)

◦ (eula) In the sequel,

I the set X is convex

I all convergence characterizations are with feasible iterates xk ∈ X

I L-smooth means ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ X

I ∇ may refer to the generalized subdifferential

Deep learning theory for computer vision | Volkan Cevher, Fanghui Liu, Grigorios Chyrsos; firstname.lastname@epfl.ch Slide 5/ 81



Warm up: Flexibility of the template

Φ? = min
x∈X

max
y:y∈Y

Φ(x,y)︸              ︷︷              ︸
f(x)

(argmin, argmax→ x?,y?)

f? = min
x:x∈X

f(x) (argmin→ x?)

◦ (eula) In the sequel,

I the set X is convex

I all convergence characterizations are with feasible iterates xk ∈ X

I L-smooth means ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ X

I ∇ may refer to the generalized subdifferential

Deep learning theory for computer vision | Volkan Cevher, Fanghui Liu, Grigorios Chyrsos; firstname.lastname@epfl.ch Slide 5/ 81



Warm up: Flexibility of the template

Φ? = min
x∈X

max
y:y∈Y

Φ(x,y)︸              ︷︷              ︸
f(x)

(argmin, argmax→ x?,y?)

f? = min
x:x∈X

f(x) (argmin→ x?)

◦ (eula) In the sequel,

I the set X is convex

I all convergence characterizations are with feasible iterates xk ∈ X

I L-smooth means ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ X

I ∇ may refer to the generalized subdifferential

Deep learning theory for computer vision | Volkan Cevher, Fanghui Liu, Grigorios Chyrsos; firstname.lastname@epfl.ch Slide 5/ 81



A deep learning optimization problem in supervised learning

Definition (Optimization formulation)
The “deep-learning” problem with a neural network hx(a) is given by

x? ∈ arg min
x∈X

{
f(x) :=

1
n

n∑
i=1

L(hx(ai), bi)

}
,

where X denotes the constraints and L is a loss function.

◦ A single hidden layer neural network with params x := [X1,X2, µ1, µ2]

hx(a) :=

[
X2

] activationy
σ


weight
↓[

X1

] input
↓[
a

]
+

bias
↓[
µ1

]
︸                                                      ︷︷                                                      ︸

hidden layer = learned features

+

bias
↓[
µ2

]
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A deep learning optimization problem in supervised learning

Definition (Optimization formulation)
The “deep-learning” problem with a neural network hx(a) is given by

x? ∈ arg min
x∈X

{
f(x) :=

1
n

n∑
i=1

L(hx(ai), bi)

}
,

where X denotes the constraints and L is a loss function.

Adversarial Training
Let hx : Rn → R be a model with parameters x and let {(ai,bi)}ni=1, with ai ∈ R

p and bi be the
corresponding labels. The adversarial training optimization problem is given by

min
x

 1
n

n∑
i=1

fi(x) :=
1
n

n∑
i=1

[
max
δ:‖δ‖≤ε

L(hx (ai + δ),bi)
]

︸                                      ︷︷                                      ︸
=:fi(x)

 .

Note that L is not continuously differentiable due to ReLU, max-pooling, etc.
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A deep learning optimization problem in supervised learning

Definition (Optimization formulation)
The “deep-learning” problem with a neural network hx(a) is given by

x? ∈ arg min
x∈X

{
f(x) :=

1
n

n∑
i=1

L(hx(ai), bi)

}
,

where X denotes the constraints and L is a loss function.

Example objectives in different tasks
I minx

{
1
n

∑n

i=1

[
maxδ:‖δ‖∞≤ε L (hx (ai+δ) ,bi)

]}
Adversarial training [44].

I minx
{

1
n

∑n

i=1

[
maxδ:‖δ‖2≤ε L(hx+δ (ai),bi)

]}
ε-stability training [10],

Sharpness-aware minimization [29].
I minx maxbc∈[C]

1
nc

∑nc
i=1

[
maxδ:‖δ‖≤ε L

(
hx (ai+δ) ,bci

)]
Class fairness [67].
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Basic questions on solution concepts
◦ Consider the finite sum setting

f? := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}
.

◦ Goal: Find x? such that ∇f(x?) = 0.

1. Does SGD converge with probability 1?
[8, 71, 55, 61]

2. Does SGD avoid non-minimum points
with probability 1? [51, 31, 61]

3. How fast does SGD converge to local
minimizers? [31, 32, 61]

4. Can SGD converge to global
minimizers?
[42, 45, 34, 89, 37, 64, 53, 25, 97, 47, 72]

Vanilla (Minibatch) SGD
Input: Stochastic gradient oracle g, initial point x0, step size αk
1. For k = 0, 1, . . .:

obtain the (minibatch) stochastic gradient gk
update xk+1 ← xk − γkgk

Perturbed Stochastic Gradient Descent [30]
Input: Stochastic gradient oracle g, initial point x0, step size αk
1. For k = 0, 1, . . .:

sample noise ξ uniformly from unit sphere
update xk+1 ← xk − αk(gk + ξ)

?Stochastic Gradient Langevin Dynamics [80]
Input: Stochastic gradient oracle g, initial point x0, step size αk
1. For k = 0, 1, . . .

sample noise ξ standard Gaussian
update xk+1 ← xl − αkgk +

√
2αkξ
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Solving the outer problem: Gradient computation

Adversarial Training
Let hx : Rp → R be a model with parameters x and let {(ai,bi)}ni=1, with ai ∈ R

p and bi be the
corresponding labels. The adversarial training optimization problem is given by

min
x

 1
n

n∑
i=1

fi(x) :=
1
n

n∑
i=1

[
max
δ:‖δ‖≤ε

L(hx (ai + δ),bi)
]

︸                                      ︷︷                                      ︸
=:fi(x)

 .

Note that L is not continuously differentiable due to ReLU, max-pooling, etc.

Question
How can we compute the following stochastic gradient (i.e., Ei∇xfi(x) = ∇xfi(x) for i ∼ Uniform{1, . . . , n}):

∇xfi(x) := ∇x

(
max
δ:‖δ‖≤ε

L(hx (ai + δ),bi)
)

?

◦ Challenge: It involves differentiating with respect to a maximization.

Deep learning theory for computer vision | Volkan Cevher, Fanghui Liu, Grigorios Chyrsos; firstname.lastname@epfl.ch Slide 8/ 81



Danskin’s Theorem (1966): How do we compute the gradient?

Theorem ([21])
Let S be compact set, Φ : Rp ×S be continuous such that Φ(·,y) is differentiable for all y ∈ S, and ∇xΦ(x,y)
be continuous on Rp × S. Define

f(x) B max
y∈S

Φ(x,y), S?(x) B arg max
y∈S

Φ(x,y).

Let γ ∈ Rp, and ‖γ‖2 = 1. The directional derivative Dγf(x̄) of f in the direction γ at x̄ is given by

Dγf(x̄) = max
y∈S?(x̄)

〈γ,∇xΦ(x̄,y)〉.

An immediate consequence
If δ? ∈ arg maxδ:‖δ‖≤ε L(hx (ai + δ),bi) is unique, then we have

∇xfi(x) = ∇xL(hx (ai + δ?),bi) .
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Optimized perturbations are typically not unique!
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Figure: (left) Pairwise `2-distances between “optimized” perturbations with different initializations are bounded away from zero.
(right) The losses of multiple perturbations on the same sample concentrate around a value much larger than the clean loss.
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Theoretical foundations

?

unique δ? non-unique δ?
∇xΦ(x, δ?) ∇xf(x) descent direction [58]

level sets

xk
rf(xk)

pk
xk + D(f, xk)
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A counterexample

f(x) B max
δ∈[−1,1]

xδ = |x| .

◦ We have S B [−1, 1] and Φ(x, δ) = xδ.

◦ At x = 0, we have S?(0) = [−1, 1].

◦ We can choose δ = 1 ∈ S?(0): Φ(x, 1) = x.

I −∇xΦ(0, 1) = −1 , 0.

I Is −1 a descent direction at x = 0?
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Our understanding [Latorre, Krawczuk, Dadi, Pethick, Cevher, ICLR (2023)]

◦ The corollary in [58] is false (it is subtle!).

◦ We constructed a counter example & proposed an alternative way (DDi) of computing “the gradient”:

unique δ? non-unique δ?
∇xΦ(x, δ?) ∇xf(x) could be ascent direction!
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Figure: Left and middle pane: comparison DDi and PGD ([58]) on a synthetic problem. Right pane: DDi vs PGD on CIFAR10.
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Comparison with the state-of-the-art
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Figure: (left) PGD vs DDi on CIFAR10, in a setting covered by theory. (right) An ablation testing the effect of adding back the
elements not covered by theory (BN,ReLU,momentum).

DDi + Graduate Student Descent may improve things (performance or catastrophic overfitting)?
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Learning without concentration

◦ We can minimize W1 (µ̂n, hx#pΩ) with respect to x.

◦ Figure: Empirical distribution (blue), µ̂n =
∑n

i=1 δi

A plug-in empirical estimator
Using the triangle inequality for Wasserstein distances we can upper bound in the follow way,

W1(µ\, hx#pΩ) ≤W1(µ\, µ̂n) +W1(µ̂n, hx#pΩ), (1)

where µ̂n is the empirical estimator of µ\ obtained from n independent samples from µ\.

Theorem (Slow convergence of empirical measures in 1-Wasserstein [79, 26])
Let µ\ be a measure defined on Rp and let µ̂n be its empirical measure. Then the µ̂n converges, in the worst
case, at the following rate,

W1(µ\, µ̂n) & n−1/p. (2)

Remarks: ◦ Using an empirical estimator in high-dimensions is terrible in the worst case.
◦ However, it does not directly say that W1

(
µ\, hx#pΩ

)
will be large.

◦ So we can still proceed and hope our parameterization interpolates harmlessly.
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Duality of 1-Wasserstein
◦ How do we get a sub-gradient of W1 (µ̂n, hx#pΩ) with respect to x?

Theorem (Kantorovich-Rubinstein duality)

W1(µ, ν) = sup
d
{〈d, µ〉 − 〈d, ν〉 : d is 1-Lipschitz} (3)

Remark: ◦ d is the “dual” variable. In the literature, it is commonly referred to as the “discriminator.”

Inner product is an expectation

〈d, µ〉 =
∫

ddµ =
∫

d(a)dµ(a) = Ea∼µ [d(a)] . (4)

Kantorovich-Rubinstein duality applied to our objective

W1 (µ̂n, hx#ω) = sup
{
Ea∼µ̂n [d(a)]−Ea∼hx#ω [d(a)] : d is 1-Lipschitz

}
(5)
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Another minimax example: Generative adversarial networks (GANs)
◦ Ingredients:
I fixed noise distribution pΩ (e.g., normal)
I target distribution µ̂n (natural images)
I X parameter class inducing a class of functions (generators)
I Y parameter class inducing a class of functions (dual variables)

Wasserstein GANs formulation [3]
Define a parameterized function dy(a), where y ∈ Y such that dy(a) is 1-Lipschitz. In this case, the
Wasserstein GAN training problem is given by

min
x∈X

(
max
y∈Y

Ea∼µ̂n [dy(a)]−Eω∼pΩ [dy(hx(ω))]
)
. (6)

This problem is already captured by the template minx∈X maxy∈Y Φ(x,y). Note that the original problem is a
direct non-smooth minimization problem and the Rubinstein-Kantarovic duality results in the minimax template.

Remarks: ◦ Cannot solve in a manner similar to adversarial training a la Danskin. Need a direct approach.
◦ Scalability, mode collapse, catastrophic forgetting. Heuristics galore!
◦ Enforce Lipschitz constraint weight clipping, gradient penalty, spectral normalization [3, 36, 62].
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Abstract minmax formulation

Minimax formulation

min
x∈X

max
y∈Y

Φ(x,y), (7)

where
I Φ is differentiable and nonconvex in x and nonconcave in y,
I The domain is unconstrained, specifically X = Rm and Y = Rn.

◦ Key questions:

1. Where do the algorithms converge?

2. When do the algorithm converge?

Deep learning theory for computer vision | Volkan Cevher, Fanghui Liu, Grigorios Chyrsos; firstname.lastname@epfl.ch Slide 18/ 81



Solving the minimax problem: Solution concepts

◦ Consider the unconstrained setting:

Φ? = min
x

max
y

Φ(x,y)

◦ Goal: Find an LNE point (x?,y?).
Figure: The monkey saddle
Φ(x, y) = x3 − 3xy2.

Figure: The weird saddle
Φ(x, y) = −x2y2 + xy.

Definition (Local Nash Equilibrium)
A pure strategy (x?,y?) is called a local Nash equilibrium if

Φ (x?,y) ≤ Φ (x?,y?) ≤ Φ (x,y?) (LNE)

for all x and y within some neighborhood of x? and y?, i.e.,
‖x− x?‖ ≤ ε and ‖y− y?‖ ≤ ε for some ε > 0.

Necessary conditions
Through a Taylor expansion around x? and
y? one can show that a LNE implies

∇xΦ(x,y),−∇yΦ(x,y) = 0;
∇xxΦ(x,y),−∇yyΦ(x,y) � 0.
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Abstract minmax formulation
Minimax formulation

min
x∈X

max
y∈Y

Φ(x,y), (8)

where
I Φ is differentiable and nonconvex in x and nonconcave in y,
I The domain is unconstrained, specifically X = Rm and Y = Rn.

◦ Key questions:

1. Where do the algorithms converge?

2. When do the algorithm converge?

A buffet of negative results [22]
“Even when the objective is a Lipschitz and smooth differentiable function, deciding whether a min-max point
exists, in fact even deciding whether an approximate min-max point exists, is NP-hard. More importantly, an
approximate local min-max point of large enough approximation is guaranteed to exist, but finding one such
point is PPAD-complete. The same is true of computing an approximate fixed point of the (Projected) Gradient
Descent/Ascent update dynamics.”
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Basic algorithms for minimax
◦ Given minx∈X maxy∈Y Φ(x,y), define V (z) = [∇xΦ(x,y),−∇yΦ(x,y)] with z = [x,y].

2 1 0 1 2
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

GDA
OGDA
EG
PP
Critical point

Figure: Trajectory of different algorithms for a simple bilinear game minx maxy xy.

◦ (In)Famous algorithms
I Gradient Descent Ascent (GDA)
I Proximal point method (PPM) [69, 35]
I Extra-gradient (EG) [48]
I Optimistic GDA (OGDA) [94, 59]
I Reflected-Forward-Backward-Splitting (RFBS) [15]

◦ EG and OGDA are approximations of the PPM
I zk+1 = zk − αV (zk).
I zk+1 = zk − αV (zk+1).
I zk+1 = zk − αV (zk − αV (zk−1)).
I zk+1 = zk − α[2V (zk)− V (zk−1)].
I zk+1 = zk − αV (2zk − zk−1).
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Where do the algorithms converge?

◦ Recall: Given minx∈X maxy∈Y Φ(x,y), define V (z) = [∇xΦ(x,y),−∇yΦ(x,y)] with z = [x,y].

◦ Given V (z), define stochastic estimates of V (z, ζ) = V (z) + U(z, ζ), where

I U(z, ζ) is a bias term,

I We often have unbiasedness: EU(z, ζ) = 0,

I The bias term can have bounded moments,

I We often have bounded variance: P (‖U(z, ζ) ‖ ≥ t) ≤ 2 exp− t2

2σ2 for σ > 0.

◦ An abstract template for generalized Robbins-Monro schemes, dubbed as A:

zk+1 = zk − αkV (zk, ζk).

The dessert section in the buffet of negative results: [41]
1. Bounded trajectories of A always converge to an internally chain-transitive (ICT) set.
2. Trajectories of A may converge with arbitrarily high probability to spurious attractors that contain no

critical point of Φ.
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Minimax is more difficult than just optimization [41]
◦ Internally chain-transitive (ICT) sets characterize the convergence of dynamical systems [9].

I For optimization, {attracting ICT} ≡ {solutions}

I For minimax, {attracting ICT} ≡ {solutions} ∪ {spurious sets}

◦ “Almost” bilinear , bilinear:

Φ(x, y) = xy + εφ(x), φ(x) =
1
2
x2 −

1
4
x4
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◦ The “forsaken” solutions:

Φ(y, x) = y(x−0.5)+φ(y)−φ(x), φ(u) =
1
4
u2−

1
2
u4+

1
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When do the algorithms converge?

Assumption (weak Minty variational inequality)
For some ρ ∈ R, weak MVI implies

〈V (z), z− z?〉 > ρ‖V (z)‖2, for all z ∈ Rn. (9)

◦ A variant EG+ converges when ρ > − 1
8L

I Diakonikolas, Daskalakis, Jordan, AISTATS 2021.
◦ It still cannot handle the examples of [41].

z⋆z

−V(z)

Figure: The operator V (z) is allowed to point away from
the solution by some amount when ρ is negative.

◦ Complete picture under weak MVI (ICLR’22 and ’23)
I Pethick, Lalafat, Patrinos, Fercoq, and Cevher.
I constrained and regularized settings with ρ > − 1

2L
I matching lower bounds
I stochastic variants handling the examples of [41]
I adaptive variants handling the examples of [41]
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GANs with SEG+ [68]

Figure: A performance comparison of GAN training by Adam, EG with stochastic gradients, and SEG+.
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Robustness of the worst-performing class [67]

air
pla

ne

au
tom

ob
ile bir

d cat de
er do

g
fro

g
ho

rse shi
p

tru
ck

0.0

0.2

0.4

0.6

Ro
bu

st
 te

st
 a

cc
ur

ac
y

ERM-AT

(a)

air
pla

ne

au
tom

ob
ile bir

d cat de
er do

g
fro

g
ho

rse shi
p

tru
ck

0.0

0.2

0.4

0.6

Ro
bu

st
 te

st
 a

cc
ur

ac
y

CFOL-AT

(b)

Figure: Robust test accuracy of (a) Empirical Risk Minimization and (b) the class focused online learning.

Code: https://github.com/LIONS-EPFL/class-focused-online-learning-code
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Out of the frying pan into the fire
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Original Formulation of Adversarial Training (I)

minx E

 max
δ:‖δ‖≤ε

L(x, a + δ,b)


which loss L?
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Original Formulation of Adversarial Training (II)

minx E

 max
δ:‖δ‖≤ε

L01(x, a + δ,b)


minx E

 max
δ:‖δ‖≤ε

LCE(x, a + δ,b)
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Surrogate-based optimization for Risk Minimization

E [L01(x?, a,b)] ≤ minx E [LCE(x, a,b)]
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Adversary maximizes an upper bound (I)

L01(x, a + δ?,b) ≤ max
δ:‖δ‖≤ε

LCE(x, a + δ,b)
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Adversary maximizes an upper bound (II)

Deep learning theory for computer vision | Volkan Cevher, Fanghui Liu, Grigorios Chyrsos; firstname.lastname@epfl.ch Slide 32/ 81



Why maximizing Cross-Entropy leads to weak adversaries

Suppose b1 = 1, c = 4:

hx(a + δA)= (0.26, 0.24, 0.25, 0.25)
hx(a + δB)= (0.49, 0.51, 0, 0)

LCE(x, a + δA,b)= 1.38
LCE(x, a + δB,b)= 1.18
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Adversary’s problem can be “solved” without using surrogates

Theorem (Reformulation of the Adversary’s problem)

δ? ∈ arg max
δ:‖δ‖≤ε

max
j,b

hx(a + δ)j − hx(a + δ)b ⇒

δ? ∈ arg max
δ:‖δ‖≤ε

L01(x, a + δ,b)
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Bilevel Optimization (BETA) [Robey,∗ Latorre,∗ Pappas, Hassani, Cevher(2023)]1

min
x∈x

1
n

n∑
i=1
LCE(x, ai + δ?i,j?,bi)

such that δ?i,j ∈ arg max
δ: ‖δ‖≤ε

hx(ai + δ)j − hx(ai + δ)bi

j? ∈ arg max
j∈[K]−{bi}

hx(ai + δi,j?)j − hx(ai + δi,j?)bi

1https://infoscience.epfl.ch/record/302995 or https://tinyurl.com/33yup77v
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Practical Consequences of the Bilevel Formulation (I)

Figure: Learning curves of PGD10-AT (Left) and BETA10-AT

(Right). Robust accuracy estimated with PGD20
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Practical Consequences of the Bilevel Formulation (I)

Training
algorithm

Test accuracy

Clean BETA10 APGD

Best Last Best Last Best Last

FGSM 81.96 75.43 40.30 0.04 41.56 0.00
PGD10 83.71 83.21 43.64 40.21 44.36 42.62

TRADES10 81.64 81.42 44.31 40.97 43.34 41.33
MART10 78.80 77.20 44.81 41.22 45.00 42.90

BETA-AT5 87.02 86.67 42.62 42.61 41.44 41.02
BETA-AT10 85.37 85.30 44.54 44.36 44.32 44.12
BETA-AT20 82.11 81.72 46.91 45.90 45.27 45.25

Table 1: Estimated `1 robustness (robust test accuracy). BETA+RMSprop (ours) vs APGD-targeted
(APGD-T) vs AutoAttack (AA). CIFAR-10. BETA and APGD-T use 30 iterations + single restart.
✏ = 8/255. AA uses 4 different attacks with 100 iterations and 5 restarts.

Model BETA APGD-T AA BETA/AA gap Architecture

Wang et al. [53] 70.78 70.75 70.69 0.09 WRN-70-16
Wang et al. [53] 67.37 67.33 67.31 0.06 WRN-28-10
Rebuffi et al. [54] 66.75 66.71 66.58 0.17 WRN-70-16
Gowal et al. [55] 66.27 66.26 66.11 0.16 WRN-70-16
Huang et al. [56] 65.88 65.88 65.79 0.09 WRN-A4
Rebuffi et al. [54] 64.73 64.71 64.64 0.09 WRN-106-16
Rebuffi et al. [54] 64.36 64.27 64.25 0.11 WRN-70-16
Gowal et al. [55] 63.58 63.45 63.44 0.14 WRN-28-10
Pang et al. [57] 63.38 63.37 63.35 0.03 WRN-70-16

as RobustBench [27, 36]. In brief, AutoAttack comprises a collection of four disparate attacks:248

APGD-CE, APGD-T, FAB, and Square Attack. AutoAttack also involves several heuristics, including249

multiple restarts and variable stopping conditions. In Table 1, we compare the performance of the top-250

performing models on RobustBench against AutoAttack, APGD-T, and BETA with RMSprop. Both251

APGD-T and BETA used thirty steps, whereas we used the default implementation of AutoAttack,252

which runs for 100 iterations. We also recorded the gap between AutoAttack and BETA. Notice253

that the 30-step BETA—a heuristic-free algorithm derived from our bilevel formulation of AT—254

performs almost identically to AutoAttack, despite the fact that AutoAttack runs for significantly more255

iterations and uses five restarts, which endows AutoAttack with an unfair computational advantage.256

That is, excepting for a negligible number of samples, BETA matches the robustness estimate of257

AutoPGD-targeted and AutoAttack, despite using an off-the-shelf optimizer.258

6 Related work259

Robust overfitting. Several recent papers (see, e.g., [26, 54, 58–61]) have attempted to explain and260

resolve robust overfitting [34]. However, none of these works point to a fundamental limitation of261

adversarial training as the cause of robust overfitting. Rather, much of this past work has focused262

on proposing heuristics for algorithms specifically designed to reduce robust overfitting, rather than263

to improve adversarial training. In contrast, we posit that the lack of guarantees of the zero-sum264

surrogate-based AT paradigm [20] is at fault, as this paradigm is not designed to maximize robustness265

8

Figure: Adversarial performance on CIFAR-10.
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Take home messages

◦ Even the simplified view of robust & adversarial ML is challenging

◦ min-max-type has spurious attractors with no equivalent concept in min-type

◦ Not all step-size schedules are considered in our work: Possible to “converge” under some settings

◦ Other successful attempts1 consider “mixed Nash” concepts2

◦ Existing theory and methods for adversarial training is wrong!

... SAM too...

1Y-P. Hsieh, C. Liu, and V. Cevher, “Finding mixed Nash equilibria of generative adversarial networks,” International Conference on Machine Learning, 2019.
2K. Parameswaran, Y-T. Huang, Y-P. Hsieh, P. Rolland, C. Shi, V. Cevher, “Robust Reinforcement Learning via Adversarial Training with Langevin Dynamics,” NeurIPS, 2020.
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Break
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Over-parameterization: more parameters than training data

MLP:
<< 1 million
parameters

ResNet-152:
60.3 million
parameters

Transformer:
340 million
parameters

GPT-2:
1.5 billion

parameters

GPT-3, Chat-GPT:
175 billion
parameters

before 2012 2017 2019 202020152012

AlexNet

2022

GPT-4
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Over-parameterization: more parameters than training data

Figure: Larger models make increasingly efficient use of in-context information: source from Open AI.
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Recall DNNs: the good in fitting ...

Figure: DNN Training curves on CIFAR10, from [90]

◦ A gap between theory and practice:
I DNNs can fit random labels
I SGD: zero training error and low test error
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Recall DNNs: the bad in robustness...

(a) Invisibility [83] (b) Stop sign classified as 45 mph sign [28]

the ugly in over-parameterization?
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A toy example: curve fitting
d 19

save

WARNING:matplotlib.legend:No handles with labels found to put in legend.
norm:  69.17524431176956

<function __main__.run(d, save=False)>

norm:  77.56023507806226

run(d=20)

norm:  1.4191230288785373

run(d=3)

run(d=1000)

 0 秒 完成时间：10:48
Colab 付费产品 - 在此处取消合同

norm:  1.393267492538217

norm:  0.8353271714048255

run(d=1)

(b) under-fitting

d 19

save

norm:  176.96526383385023

<function __main__.run(d, save=False)>

norm:  77.56023507806226

run(d=20)

norm:  1.4191230288785373

run(d=3)

run(d=1000)

(c) sweet spot

d 20

save

WARNING:matplotlib.legend:No handles with labels found to put in legend.
norm:  241.08926589939713

<function __main__.run(d, save=False)>

norm:  77.56023507806226

run(d=20)

norm:  1.4191230288785373

run(d=3)

run(d=1000)

(d) overfitting

 0 秒 完成时间：10:48
Colab 付费产品 - 在此处取消合同

norm:  1.393267492538217

norm:  0.8353271714048255

run(d=1)
(e) benign overfitting [6]

Figure: Test performance on curve fitting: source from Open AI.
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Recall: the formulation of FCNN

h(0)(a) = a,

h(l)(a) =

activationy
σ


weight
↓[

Xl

] input features
↓[

h(l−1)(a)

],
hx(a) = h(L)(a) =

1
α
σ
(
XLh

(L−1)(a)
)
, x := [X1,X2, · · · ,XL] .

(L-Layer NN)

◦ Elements of NN architectures we will discuss in the sequel:
I Parameters: X1 ∈ Rm×p, XL ∈ R1×m, Xl ∈ Rm×m for l = 2, 3, · · · , L− 1 (weights).

I Initialization: X1 ∼ N (0, β2
1), XL ∼ N (0, β2

L), Xl ∼ N (0, β2) for l = 2, 3, · · · , L− 1 (weights).

I Activation function ReLU: σ(·) = max(·, 0) : R→ R.

I Without loss of generality, we will avoid the bias variables in the sequel.
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Initialization in deep ReLU NNs

◦ Initialization: X1 ∼ N (0, β2
1), XL ∼ N (0, β2

L), Xl ∼ N (0, β2) for l = 2, 3, · · · , L− 1 (weights).

Table: Some commonly used initializations in neural networks.

Initialization name β2
1 β2 β2

L α

LeCun [50] 1
p

1
m

1
m

1

He [38] 2
p

2
m

2
m

1

NTK [2] 2
m

2
m

1 1

Xavier [33] 2
m+p

1
m

2
m+1 1

Mean-field [60] 1 1 1 m

E et al. [27] 1 1 β2
c 1

Figure: Phase diagram of two-layer ReLU NNs at
infinite-width limit in [56].
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Lazy training

Definition (Lazy-training (Linear) regime [56])
Define an L-layer fully-connected ReLU NN via (L-Layer NN). After training time t, as m→∞, if the
following condition holds

sup
t∈[0,+∞)

‖Xl(t)−Xl(0)‖2
‖Xl(0)‖2

→ 0, ∀l ∈ [L] .

then the NN training dynamics falls into the lazy-training regime.

Remarks: ◦ In this regime, training h and h0 is equivalent if taking Taylor expansion.
◦ Which conditions allow for lazy training to occur ?

Deep learning theory for computer vision | Volkan Cevher, Fanghui Liu, Grigorios Chyrsos; firstname.lastname@epfl.ch Slide 46/ 81



Lazy training: a consequence of overparametrization or scaling?

Theorem (Lazy training for two-layer ReLU networks [18], modified version)
Two layer networks h(a, {x,v}) : a 7→ α(m)

∑m

j=1 vjReLU(x>j a) with Gaussian initialization vi,xi ∼ N (0, β2)
will fall within the lazy regime as long as

lim
m→∞

mβ =∞ .

Remarks: ◦ The loss changes a lot but the neural network output changes little.
◦ Other conditions for deep neural networks can be found here [18, 7].
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Lazy training regime: visualization

X(0) X(t)

lazy training regime

Lecun, He

NTK

supt∈[0,+∞)

∥
Xl(t)−Xl(0)

∥
F∥

Xl(0)
∥

F
→ 0

Figure: Training dynamics of two-layer ReLU NNs under different initializations [46, 19, 57].
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Lazy training regime: experiments

lazy training ratio κ :=

∑L

l=1 ‖Xl(t)−Xl(0)‖F∑L

l=1 ‖Xl(0)‖F

0 10 20 30 40 50
Epochs

0.004
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L=2, Lazy
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Width
0
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Non-lazy training regime: visualization

X(0)

mean field regime

Xavier
X(t)

supt∈[0,+∞)

∥
Xl(t)−Xl(0)

∥
F∥

Xl(0)
∥

F
→ 1

Figure: Training dynamics of two-layer ReLU NNs under different initializations [46, 19, 57].
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Figure: Training dynamics of two-layer ReLU NNs under different initializations [46, 19, 57].
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Neural Tangent Kernel [46]

◦ Define feature mapping a 7→ ∂h
∂x (a,x0), the (empirical) neural tangent kernel is defined as

Θ(ai,aj) := 〈∇xh(ai,x),∇xh(aj ,x)〉 ,∀i, j ∈ [n] .

Training dynamics
Under NTK initialization and large enough width, we have

lim
width→∞

Θx(0)(ai,aj) = Ex[Θx(0)(ai,aj)] =: K∞ .

Under the squared loss, the dynamics of h(a,x) is equivalent to kernel regression

ḣ(a,x(t)) = ∇xh(a,x)ẋ(t) = K∞(a,ai)(h(a,x(t))− b) .

Remarks: ◦ NTK stays unchanged during training
◦ General loss functions: equivalence between infinite NNs and kernel methods [17]
I e.g., NN trained by soft margin loss vs. SVM trained by subgradient descent
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Convolutional neural tangent kernel
◦ Convolutional neural networks (CNNs) [4]
I without global average pooling (GAP)
I with GAP, without training the first/last year

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

3 4 6 11 21

CNN CNTK CNN-GAP CNTK-GAP

Figure: Classification accuracies of CNNs and CNTK on the CIFAR-10 dataset [4].

Remarks: ◦ This performance is below the accuracy of finite width networks (> 98%).
◦ NTK for general architectures, e.g., RNNs [1], GNNs [24, 49], PNNs [82]

Deep learning theory for computer vision | Volkan Cevher, Fanghui Liu, Grigorios Chyrsos; firstname.lastname@epfl.ch Slide 52/ 81



Optimization and generalization by NTK

Theorem (optimization and generalization [2, 13])
For a DNN with a large enough width trained by (S)GD, under proper data assumption and step-size η,
I global convergence

L(x(t)) ≤ [1− ηλmin(K∞)]tL(x(0)) , whp.

where λmin(K∞) is the minimum eigenvalue of K∞.

I generalization guarantee

generalization error . O

(
1√

λmin(K∞)

)
+O

( 1
√
n

)
, whp.

Remarks: ◦ The objective is “almost convex”.
◦ The minimum eigenvalue of NTK plays an important role!
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How much overparametrization of fully-connected NNs is enough?

Reference Number of parameters Depth L Result

[53] Ω̃(poly(n)) 1 (S)GD global convergence

[2, 96] Ω̃(poly(n,L)) Any L (S)GD global convergence

[23] Ω̃(n82O(L)) Any L (S)GD global convergence

[97] Ω̃(n8L12) Any L (S)GD global convergence

[47] Ω̃(n) (Training last layer) Any L (S)GD global convergence

[11] Ω̃(n) (Training all layers) Any L (S)GD global convergence

Table: Summary of results on overparametrization. Minimum number of parameters required as a function of data size n and
depth L. [11]: smooth activation function; Lipschitz concentrated data; a loose pyramidal topology.

Remarks: ◦ Practical datasets are structured: the width need no be large for a good approximation [63]
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Function space: from kernel methods to neural networks

◦ Feature mapping a 7→ ∂h
∂x (a,x0): captures the first-order approximation of NN’s training.

Neural tagent kernel (NTK)

Kernel Methods Neural Networks

reproducing kernel Hilbert space (RKHS)

e.g., Hölder space, Besov space

Curse of dimensionality [5, 86, 14]

efficiently approximate non-smooth functions?

What can linearized neural networks actually say about CV tasks?
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What can we benefit from NTK for computer vision?

◦ efficient algorithm
I fine-tuning: gradient as features [63, 87]
I efficient training in low-dimensional spaces [52], neural networks pruning [54]
I robustness: generate adversarial examples [75], black-box generalization attack [88]
I small-scale dataset [66], dataset distillation [65]
I image denoising [73]
I neural architecture search in a "train-free" fashion [92, 16]

◦ understanding (and beyond)
I adversarial training [75]
I spectral bias [70]
I hyperparameter transfer [85]

lazy training non-lazy training(RKHS) (Barron/Besov spaces)
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Over-parameterization helps or hurts robustness?

Helps! [12] Hurts! [81, 43]

I initialization (e.g., lazy training, non-lazy training)
I architecture (e.g., width, depth)
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Over-parameterization helps or hurts robustness?

Helps! [12] Hurts! [81, 43]

I initialization (e.g., lazy training, non-lazy training)
I architecture (e.g., width, depth)

Definition (perturbation stability [93])
The perturbation stability of a ReLU DNN hx(a) is:

P(h, ε) = Ea,â,x
∥∥∇ahx(a)>(a − â)

∥∥
2
, ∀a ∼ DA, â ∼ Unif(B(ε,a)) .

where ε is the perturbation radius.
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Definition (perturbation stability: lazy training regime)
The perturbation stability of a ReLU DNN hx(a) is

P(h, ε) = Ea,â,x(0)
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Over-parameterization helps or hurts robustness?

Helps! [12] Hurts! [81, 43]
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Definition (perturbation stability: non-lazy training regime)
The perturbation stability of a ReLU DNN hx(a) is

P(h, ε) = Ea,â
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Main results (Lazy-training regime)

Theorem: perturbation stability . Func(m,L, β)
Assumption Initialization Our bound for P(f, ε)/ε Trend of width m [1] Trend of depth L [1]

‖x‖2 = 1

Lecun initialization
(√

L3m
p

e−m/L
3

+
√

1
p

)
(
√

2
2 )L−2 ↗↘ ↘

He initialization
√

L3m
d

e−m/L
3

+
√

1
d

↗↘ ↗

NTK initialization
√

L3m
p

e−m/L
3

+ 1 ↗↘ ↗

[1] The larger perturbation stability means worse average robustness.

◦ Takeaway messages: the good (width), the bad (depth), the ugly (initialization)

I width helps robustness in the over-parameterized regime
I depth helps robustness in Lecun initialization but hurts robustness in He/NTK initialization
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Experiments: lazy training experiment for FCNN

Metrics Ours (NTK initialization) [81] [43]
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Experiments: lazy training experiment for CNN
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Figure: Relationship between the perturbation stability and width of CNN under He initialization for different depths of
L = 4, 6, 8 and 10. More experimental results on ResNet can be found in [93].
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Main results (Non-lazy training regime)

A sufficient condition for DNNs
For large enough m and m� p, w.h.p, DNNs fall into non-lazy training regime if α� (m3/2

∑L

i=1 βi)
L.

Remarks: ◦ L = 2, α = 1, β1 = β2 = β ∼ 1
mc

with c > 1.5

Theorem (non-lazy training regime for two-layer NNs)
Under this setting with m� n2 and standard assumptions, then

perturbation stability ≤ Õ
(

n

mc+1.5

)
, whp.

Remarks: ◦ Width helps robustness in the over-parameterized regime in both lazy/non-lazy training regime
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Experiment: Non-lazy training regime

lazy training ratio κ :=

∑L

l=1 ‖Xl(t)−Xl(0)‖F∑L

l=1 ‖Xl(0)‖F
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good bad ugly
neural networks performance analysis over-parameterization
generalization benign overfitting catastrophic overfitting model complexity
robustness width depth initialization

X(0) X(t)

lazy training regime
Lecun, He NTK

mean field regime
Xavier

non-lazy training regime

X(t)

∞

supt∈[0,+∞)

∥
Xl(t)−Xl(0)

∥
F∥

Xl(0)
∥

F
→ ???
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Break
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Neural Architecture Search (NAS) [95]

I An architecture has a significant impact on the performance and the inductive bias of the
model [39, 77, 78, 20].

I Manually designed architectures require domain expertise and might not be optimal.
I Instead, we can define a search procedure to select the architecture.
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Towards a principled Neural Architecture Search (NAS) [92]

x W1 σ1 W2 σ2

α2

+ . . . Wl σl

αl

+ . . . WL f(x)

αl ∈ {0, 1}

Activation function search

◦ Generalization error (of the unified architecture) with respect to the minimum eigenvalue λmin of NTK:

generalization error . O
( 1
√
λmin

)
, whp.
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Towards a principled Neural Architecture Search (NAS) [92]

◦ Beyond the depth L, the minimum eigenvalue is also affected by the
constants β1, β2, β3 that are only determined by the activation function.
Specifically, flower(β3) ≤ λmin ≤ fupper(β1, β2).
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Figure: Probability of selecting
activation per layer numerically.

Overall insights:
I The depth L and the skip connections via αl affect significantly the bounds.
I The first activation function σ1 is more important than the rest activation functions.
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Train-free Neural Architecture Search (NAS) [92]

Algorithm Eigen-NAS Algorithm

Require: Search space S, training data Dtr = {(xi, yi)Ni=1}, validation data Dval = {(xj , yj)Nvj=1}.
Initialize max_iteration = M
Initialize candidate set C = []
for search_iteration in 1, 2, . . . ,max_iteration do
Randomly sample architecture s from search space S.
Compute Eigen := minimum eigenvalue of NTK.
C.append(s, Eigen)
update C to kept top-K best architectures

end for
s? = bests(C,Dtr,Dval) # Choose the best architecture based on validation error after training 20 epochs.
Output s?
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Extrapolation

Let us assume training data {(xi, yi)}|X|i=1 and any direction v ∈ Rd that satisfies ‖v‖2 = max{‖xi‖2}. Let
x = (t+ h)v with t > 1 and h > 0 be the extrapolation data points.

Theorem (N -layer MLP [84])
The output f(x), when f is a trained N -layer
ReLU-NN, follows a linear function with respect to
h.

Theorem (N -degree PN [82])
The output f(x), when f is a trained N -degree PN,
follows a γ-degree (γ ≤ N) function with respect to
h.

Figure: (a) and (b): fitting fρ(x) = x3 + x2 − 10x+ 5. (c) and (d): fitting fρ(x) = cos(2x).
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Extrapolation – experimental validation

Table: Experimental evaluation of visual addition.

Method Accuracy (Rounding)
NN (Dense) 0.436± 0.065
PNN (Dense) 0.554 ± 0.011

NN (Conv) 0.617± 0.103
PNN (Conv) 0.825 ± 0.109
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Visualizing the components of adversarial perturbations [75]

Deep learning theory for computer vision | Volkan Cevher, Fanghui Liu, Grigorios Chyrsos; firstname.lastname@epfl.ch Slide 71/ 81



Visualizing the components of adversarial perturbations [75]

Deep learning theory for computer vision | Volkan Cevher, Fanghui Liu, Grigorios Chyrsos; firstname.lastname@epfl.ch Slide 71/ 81



Visualizing the features [75]

Figure: (Left) Top 5 features for 7 different kernel architectures for a car image. (Right) Features according to their robustness
(x-axis) and usefulness (y-axis).
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The role of positional encodings in implicit representations [74]
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Denoising with Deep Image Prior (DIP) [76]

I Inverse problems have immense applications in imaging tasks.
I Deep Image Prior (DIP) does not require training with massive data. The noisy (input) image is sufficient.

I How does DIP work?
I Why does DIP work?
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The Neural Tangent Link Between DIP and Non-Local Filters [73]

I From DIP to NTK [second part of the tutorial].

I Link between first-order approximation of DIP network and non-local filters.
I Compute the NTK Gram matrix instead of learning. Use directly that version for denoising.
I Use insights from the derivation to explain why the optimizer is crucial and why DIP works primarily with

Adam and not SGD.
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Beyond linear layers

I Analysis typically assumes fully-connected layers, which are far from practice, e.g., in convolutional
networks.

I Analysis of contemporary components, e.g. layer normalization, remains elusive.
I The assumptions on the components are often restrictive and do not reflect their utilization in actual

applications.
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Analysis of Transformers

I No complete analysis of the self-attention block with the softmax [40].

I Simplifying assumptions in the transformer block, e.g., width of the layers.
I Little insight into what is special about transformers when compared to other architectures.
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Learning regime

I There is an incomplete list of theoretical insights for guiding practical implementations.

I Most of the properties, e.g., inductive bias, is derived on the lazy regime, which might not reflect what
happens in practice.

I We currently lack any evidence on whether lazy regime is realistic and under which cases.
I The theoretical analysis on the non-lazy regime seems to be much more diverse, which creates a

requirement for a more thorough taxonomy.
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Practical considerations

I How can the theoretical insights extend beyond classification to problems relevant to vision? For instance,
(conditional) generation, dense reconstruction or tracking?

I Can tight generalization bounds be used for guiding practical implementations [91]?
I How can we relax the existing theoretical tools to reflect practical implementations (e.g., having a finite

width)?
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Thanks for your attention!

Q & A
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