Discrete Mathematics and Its Applications 2 (CS147)

Lecture 9: Conditional probability, independence

Fanghui Liu

Department of Computer Science, University of Warwick, UK

Figure: Borromean rings.

Recall Probability...

- a metric/measure/function f of "event A occurs"

Definition (Probability)

Probability $\operatorname{Pr}: \mathcal{F} \rightarrow[0,1]$ is a function that assigns a value to events

- nonnegativity: $\operatorname{Pr}(A) \geq 0$
- normalization: $\operatorname{Pr}(\Omega)=1$
- countable additivity: if $A_{i} \in \mathcal{F}$ is a countable sequence of disjoint sets, then $\operatorname{Pr}\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \operatorname{Pr}\left(A_{i}\right)$
- (Ω, \mathcal{F}) is a measurable space
- $(\Omega, \mathcal{F}, \operatorname{Pr})$ is a probability space

Conditional probability

Problem

If the event B occurs, then what is the probability of event A ?

Conditional probability

Problem

If the event B occurs, then what is the probability of event A ?

Remark: Given additional information, we infer the outcome of a random trial.

Conditional probability

Problem

If the event B occurs, then what is the probability of event A ?

Remark: Given additional information, we infer the outcome of a random trial.

Definition (Conditional probability)

Consider any two events $A, B \subseteq \Omega$, if $\operatorname{Pr}(B)>0$, the conditional probability is

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

Remark: the probability of event A occurs given that event B occurs.

Partition theorem

Definition (Partition)

$\left\{B_{1}, \ldots, B_{n}\right\} \subseteq \Omega$ be a partition of the sample space Ω if

- $\Omega=\cup_{i=1}^{n} B_{i}$.
- $\operatorname{Pr}\left(B_{i}\right)>0, \forall i \in[n]$.
- $B_{i} \cap B_{j}=\emptyset \forall i \neq j$.

Partition theorem

Definition (Partition)

$\left\{B_{1}, \ldots, B_{n}\right\} \subseteq \Omega$ be a partition of the sample space Ω if

- $\Omega=\cup_{i=1}^{n} B_{i}$.
- $\operatorname{Pr}\left(B_{i}\right)>0, \forall i \in[n]$.
- $B_{i} \cap B_{j}=\emptyset \forall i \neq j$.

Definition (Law of total probability)

Let $\left\{B_{1}, \ldots, B_{n}\right\} \subseteq \Omega$ be a partition of the sample space Ω. Consider any event $A \subseteq \Omega$, we have

$$
\operatorname{Pr}(A)=\sum_{i=1}^{n} \operatorname{Pr}\left(A \cap B_{i}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(A \mid B_{i}\right) \operatorname{Pr}\left(B_{i}\right) .
$$

Remark: a special case: $\operatorname{Pr}(A)=\operatorname{Pr}(A \cap B)+\operatorname{Pr}\left(A \cap B^{c}\right)$.

From reason to result, from result to reason...

- law of total probability: from reason to result
- A : result/phenomenon

$$
\operatorname{Pr}(A)=\sum_{i=1}^{n} \operatorname{Pr}\left(B_{i}\right) \operatorname{Pr}\left(A \mid B_{i}\right)
$$

- $\left\{B_{i}\right\}_{i=1}^{n}$: reason

From reason to result, from result to reason...

- law of total probability: from reason to result
- A : result/phenomenon

$$
\operatorname{Pr}(A)=\sum_{i=1}^{n} \operatorname{Pr}\left(B_{i}\right) \operatorname{Pr}\left(A \mid B_{i}\right)
$$

- $\left\{B_{i}\right\}_{i=1}^{n}$: reason

In practice, we observe some phenomenon, and then infer which reason(s) cause this.

From reason to result, from result to reason...

- law of total probability: from reason to result
- A : result/phenomenon

$$
\operatorname{Pr}(A)=\sum_{i=1}^{n} \operatorname{Pr}\left(B_{i}\right) \operatorname{Pr}\left(A \mid B_{i}\right)
$$

- $\left\{B_{i}\right\}_{i=1}^{n}$: reason

In practice, we observe some phenomenon, and then infer which reason(s) cause this.

- Bayes's theorem: from result to reason
- $\operatorname{Pr}\left(B_{i} \mid A\right)$: event A occurs, infer the probability that the event is caused by B_{i}
- $\operatorname{Pr}\left(B_{i}\right)$: prior probability

Bayes's theorem

Theorem

Let $\left\{B_{1}, \ldots, B_{n}\right\} \subseteq \Omega$ be a partition of the sample space Ω such that $\operatorname{Pr}\left(B_{i}\right)>0, \forall i \in[n]$. Consider any event $A \subseteq \Omega$, we have

$$
\begin{aligned}
\operatorname{Pr}\left(B_{i} \mid A\right) & =\frac{\operatorname{Pr}\left(B_{i} \cap A\right)}{\operatorname{Pr}(A)}=\frac{\operatorname{Pr}\left(A \mid B_{i}\right) \operatorname{Pr}\left(B_{i}\right)}{\operatorname{Pr}(A)} \\
& =\frac{\operatorname{Pr}\left(A \mid B_{i}\right) \operatorname{Pr}\left(B_{i}\right)}{\sum_{j=1}^{n} \operatorname{Pr}\left(A \mid B_{j}\right) \operatorname{Pr}\left(B_{j}\right)}
\end{aligned}
$$

Remark: special case with $n=2: \Omega=B \cup B^{c}$.

$$
\operatorname{Pr}(B \mid A)=\frac{\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)}{\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)+\operatorname{Pr}\left(A \mid B^{c}\right) \operatorname{Pr}\left(B^{c}\right)}
$$

Example

Example

Consider a disease with an incidence rate of 1 in 10^{5} among the population. There is a diagnostic test the disease. For one person:

- If (s)he has this disease, this test is positive with probability at 9/10
- If (s)he doesn't have this disease, the test is positive with probability at $1 / 20$

Question: tested with positive now, what is the probability that he/she has this disease?

Example

Example

Consider a disease with an incidence rate of 1 in 10^{5} among the population. There is a diagnostic test the disease. For one person:

- If (s)he has this disease, this test is positive with probability at 9/10
- If (s)he doesn't have this disease, the test is positive with probability at $1 / 20$

Question: tested with positive now, what is the probability that he/she has this disease?

- result/phenomenon: tested with positive (event A)
- reasons:
- 1) has this disease (event B)
- 2) mistakes by the test (false alarm)

Example

Example

Consider a disease with an incidence rate of 1 in 10^{5} among the population. There is a diagnostic test the disease. For one person:

- If (s)he has this disease, this test is positive with probability at $9 / 10$
- If (s)he doesn't have this disease, the test is positive with probability at $1 / 20$

Question: tested with positive now, what is the probability that he/she has this disease?

- result/phenomenon: tested with positive (event A)
- reasons:
- 1) has this disease (event B)
- 2) mistakes by the test (false alarm)

Target: estimate $\operatorname{Pr}(B \mid A)$

- prior: $\operatorname{Pr}(B)=10^{-5}$
- $\operatorname{Pr}(A \mid B)=0.9$
- $\operatorname{Pr}\left(A \mid B^{c}\right)=0.05$

Solutions

- prior: $\operatorname{Pr}(B)=10^{-5}$
- $\operatorname{Pr}(A \mid B)=0.9$
- $\operatorname{Pr}\left(A \mid B^{c}\right)=0.05$

Solution

Denote $A=$ event that he/she is tested with positive; $B=$ event that he/she has this disease.

$$
\begin{aligned}
\operatorname{Pr}(B \mid A) & =\frac{\operatorname{Pr}(B \cap A)}{\operatorname{Pr}(A)}=\frac{\mathrm{P}(A \mid B) \operatorname{Pr}(B)}{\operatorname{Pr}(A \cap B)+\operatorname{Pr}\left(A \cap B^{c}\right)}=\frac{\mathrm{P}(A \mid B) \operatorname{Pr}(B)}{\mathrm{P}(A \mid B) \operatorname{Pr}(B)+\mathrm{P}\left(A \mid B^{c}\right) \operatorname{Pr}\left(B^{c}\right)} \\
& =\frac{0.9 \times 10^{-5}}{0.9 \times 10^{-5}+0.05 \times\left(1-10^{-5}\right)} \approx 0.00018
\end{aligned}
$$

Independence

$\operatorname{Pr}(A \mid B)$ changes when B changes

Definition (Independence)

Event A and B are independent if $\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B)$.

Independence

$\operatorname{Pr}(A \mid B)$ changes when B changes

Definition (Independence)

Event A and B are independent if $\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B)$.

Definition (mutually independent)

A collection of events $A_{1}, A_{2}, \ldots, A_{k} \subseteq \Omega$ are independent if and only if

$$
\forall I \subseteq[1, k], \quad \operatorname{Pr}\left(\cap_{j \in I} A_{j}\right)=\prod_{j \in I} \operatorname{Pr}\left(A_{j}\right)
$$

Independence

$\operatorname{Pr}(A \mid B)$ changes when B changes

Definition (Independence)

Event A and B are independent if $\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B)$.

Definition (mutually independent)

A collection of events $A_{1}, A_{2}, \ldots, A_{k} \subseteq \Omega$ are independent if and only if

$$
\forall I \subseteq[1, k], \quad \operatorname{Pr}\left(\cap_{j \in I} A_{j}\right)=\prod_{j \in I} \operatorname{Pr}\left(A_{j}\right)
$$

Definition (pairwise independent)

A collection of events $A_{1}, A_{2}, \ldots, A_{k} \subseteq \Omega$ are pairwise independent if and only if

$$
\forall i, j \subseteq[1, k], i \neq j, \quad \operatorname{Pr}\left(A_{i} \cap A_{j}\right)=\operatorname{Pr}\left(A_{i}\right) \operatorname{Pr}\left(A_{j}\right)
$$

Relationship between mutually independent and pairwise independent

- mutually independent \Rightarrow pairwise independent
- pairwise independent \Rightarrow mutually independent

Statement

Intuitive idea: two events A, B occur, leading to the case that C occurs

Relationship between mutually independent and pairwise independent

- mutually independent \Rightarrow pairwise independent
- pairwise independent $\Rightarrow \Rightarrow$ mutually independent

Statement
 Intuitive idea: two events A, B occur, leading to the case that C occurs mutually independent: $\operatorname{Pr}(A B C)=\operatorname{Pr}(A) \operatorname{Pr}(B) \operatorname{Pr}(C)$ pairwise independent: $\operatorname{Pr}(A B C)=\operatorname{Pr}(A \mid B C) \operatorname{Pr}(B C)=\operatorname{Pr}(A \mid B C) \operatorname{Pr}(B) \operatorname{Pr}(C)$

Relationship between mutually independent and pairwise independent

- mutually independent \Rightarrow pairwise independent
- pairwise independent $\Rightarrow \Rightarrow$ mutually independent

Statement

Intuitive idea: two events A, B occur, leading to the case that C occurs mutually independent: $\operatorname{Pr}(A B C)=\operatorname{Pr}(A) \operatorname{Pr}(B) \operatorname{Pr}(C)$
pairwise independent: $\operatorname{Pr}(A B C)=\operatorname{Pr}(A \mid B C) \operatorname{Pr}(B C)=\operatorname{Pr}(A \mid B C) \operatorname{Pr}(B) \operatorname{Pr}(C)$

Example

- Two independent fair coin tosses
- A : First toss is H
- B : Second toss is H
- C : the two tosses had the same result

Relationship between mutually independent and pairwise independent

- mutually independent \Rightarrow pairwise independent
- pairwise independent $\Rightarrow \Rightarrow$ mutually independent

Statement

Intuitive idea: two events A, B occur, leading to the case that C occurs mutually independent: $\operatorname{Pr}(A B C)=\operatorname{Pr}(A) \operatorname{Pr}(B) \operatorname{Pr}(C)$
pairwise independent: $\operatorname{Pr}(A B C)=\operatorname{Pr}(A \mid B C) \operatorname{Pr}(B C)=\operatorname{Pr}(A \mid B C) \operatorname{Pr}(B) \operatorname{Pr}(C)$

Example

- Two independent fair coin tosses
- A : First toss is H
- B : Second toss is H
- C : the two tosses had the same result

$$
\begin{aligned}
& \operatorname{Pr}(A \cap B)=\frac{1}{4}=\operatorname{Pr}(A) \operatorname{Pr}(B) \\
& \left.\operatorname{Pr}(A \cap C)=\frac{1}{4}=\operatorname{Pr}(A) \operatorname{Pr}(C) \text { (similar to } B\right) \\
& \operatorname{Pr}(A \cap B \cap C)=\frac{1}{4} \neq \operatorname{Pr}(A) \operatorname{Pr}(B) \operatorname{Pr}(C)=\frac{1}{8}
\end{aligned}
$$

Union bound

Statement

We have

$$
\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B) .
$$

Union bound

Statement

We have

$$
\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B) .
$$

Definition

Consider any events $A_{1}, A_{2}, \ldots, A_{k} \subseteq \Omega$, then

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right) \leq \operatorname{Pr}\left(A_{1}\right)+\operatorname{Pr}\left(A_{2}\right)+\ldots+\operatorname{Pr}\left(A_{k}\right) .
$$

One example in Seminar

Problem

Suppose that in your inbox, 70% of all email is spam, 90% of spam emails contain the word "lottery", and 5\% of non-spam emails contain the word "lottery". What is the probability that an email selected uniformly at random is actually spam given that it contains the word "lottery"?

*Naive Bayes classifier - Illustration

- train a binary classifier h on training data

Figure: Illustration behind the Naive Bayes algorithm. source from link.

*Naive Bayes classifier - Illustration

- train a binary classifier h on training data

Figure: Illustration behind the Naive Bayes algorithm. source from link.

$$
h(\boldsymbol{x})=\underset{y}{\arg \max } \operatorname{Pr}(y \mid \boldsymbol{x})=\underset{y}{\arg \max } \frac{\operatorname{Pr}(\boldsymbol{x} \mid y) \operatorname{Pr}(y)}{\operatorname{Pr}(\boldsymbol{x})}=\underset{y}{\arg \max } \prod_{\alpha=1}^{d} \operatorname{Pr}\left(x_{\alpha} \mid y\right) \operatorname{Pr}(y) .
$$

- density estimation for $\operatorname{Pr}(\boldsymbol{x} \mid y) \rightarrow$ curse of dimensionality
- Assumption: features are conditionally independent given the label

