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Figure: Borromean rings.
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Recall Probability...

◦ a metric/measure/function f of “event A occurs"

Definition (Probability)
Probability Pr : F → [0, 1] is a function that assigns a value to events
▶ nonnegativity: Pr(A) ≥ 0
▶ normalization: Pr(Ω) = 1
▶ countable additivity: if Ai ∈ F is a countable sequence of disjoint sets, then

Pr(∪∞
i=1Ai) =

∑∞
i=1 Pr(Ai)

◦ (Ω, F) is a measurable space
◦ (Ω, F , Pr) is a probability space
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Conditional probability

Problem
If the event B occurs, then what is the
probability of event A?

Remark: Given additional information, we infer the outcome of a random trial.

Definition (Conditional probability)
Consider any two events A, B ⊆ Ω, if Pr(B) > 0, the conditional probability is

Pr(A|B) = Pr(A ∩ B)
Pr(B) .

Remark: the probability of event A occurs given that event B occurs.
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Partition theorem

Definition (Partition)
{B1, . . . , Bn} ⊆ Ω be a partition of the sample space Ω if
▶ Ω = ∪n

i=1Bi.
▶ Pr(Bi) > 0, ∀i ∈ [n].
▶ Bi ∩ Bj = ∅ ∀i , j.

Definition (Law of total probability)
Let {B1, . . . , Bn} ⊆ Ω be a partition of the sample space Ω. Consider any event A ⊆ Ω, we
have

Pr(A) =
n∑

i=1
Pr(A ∩ Bi) =

n∑
i=1

Pr(A|Bi)Pr(Bi) .

Remark: a special case: Pr(A) = Pr(A ∩ B) + Pr(A ∩ Bc).
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From reason to result, from result to reason...

◦ law of total probability: from reason to result
▶ A: result/phenomenon

Pr(A) =
n∑

i=1
Pr(Bi) Pr(A|Bi)

▶ {Bi}n
i=1: reason

In practice, we observe some phenomenon, and then infer which reason(s) cause this.
◦ Bayes’s theorem: from result to reason
▶ Pr(Bi|A): event A occurs, infer the probability that the event is caused by Bi

▶ Pr(Bi): prior probability
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Bayes’s theorem

Theorem
Let {B1, . . . , Bn} ⊆ Ω be a partition of the sample space Ω such that Pr(Bi) > 0, ∀i ∈ [n].
Consider any event A ⊆ Ω, we have

Pr(Bi|A) = Pr(Bi ∩ A)
Pr(A) = Pr(A|Bi)Pr(Bi)

Pr(A)

= Pr(A|Bi)Pr(Bi)∑n
j=1 Pr(A|Bj)Pr(Bj)

Remark: special case with n = 2: Ω = B ∪ Bc.

Pr(B|A) = Pr(A|B)Pr(B)
Pr(A|B)Pr(B) + Pr(A|Bc)Pr(Bc)
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Example

Example
Consider a disease with an incidence rate of 1 in 105 among the population. There is a
diagnostic test the disease. For one person:
▶ If (s)he has this disease, this test is positive with probability at 9/10
▶ If (s)he doesn’t have this disease, the test is positive with probability at 1/20

Question: tested with positive now, what is the probability that he/she has this disease?

▶ result/phenomenon: tested with positive (event A)
▶ reasons:

◦ 1) has this disease (event B)
◦ 2) mistakes by the test (false alarm)

Target: estimate Pr(B|A)
▶ prior: Pr(B) = 10−5

▶ Pr(A|B) = 0.9
▶ Pr(A|Bc) = 0.05
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Solutions

▶ prior: Pr(B) = 10−5

▶ Pr(A|B) = 0.9
▶ Pr(A|Bc) = 0.05

Solution
Denote A = event that he/she is tested with positive; B = event that he/she has this disease.

Pr(B|A) = Pr(B ∩ A)
Pr(A) = P(A|B)Pr(B)

Pr(A ∩ B) + Pr(A ∩ Bc) = P(A|B)Pr(B)
P(A|B)Pr(B) + P(A|Bc)Pr(Bc)

= 0.9 × 10−5

0.9 × 10−5 + 0.05 × (1 − 10−5) ≈ 0.00018
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Independence
Pr(A|B) changes when B changes

Definition (Independence)
Event A and B are independent if Pr(A ∩ B) = Pr(A)Pr(B).

Definition (mutually independent)
A collection of events A1, A2, . . . , Ak ⊆ Ω are independent if and only if

∀I ⊆ [1, k], Pr(∩j∈IAj) =
∏
j∈I

Pr(Aj) .

Definition (pairwise independent)
A collection of events A1, A2, . . . , Ak ⊆ Ω are pairwise independent if and only if

∀i, j ⊆ [1, k], i , j, Pr(Ai ∩ Aj) = Pr(Ai)Pr(Aj) .
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Relationship between mutually independent and pairwise independent
◦ mutually independent ⇒ pairwise independent
◦ pairwise independent ⇏ mutually independent

Statement
Intuitive idea: two events A, B occur, leading to the case that C occurs

mutually independent: Pr(ABC) = Pr(A)Pr(B)Pr(C)
pairwise independent: Pr(ABC) = Pr(A|BC)Pr(BC) = Pr(A|BC)Pr(B)Pr(C)

Example
▶ Two independent fair coin tosses

◦ A: First toss is H
◦ B: Second toss is H

▶ C: the two tosses had the same result

Pr(A ∩ B) = 1
4 = Pr(A)Pr(B)

Pr(A ∩ C) = 1
4 = Pr(A)Pr(C) (similar to B)

Pr(A ∩ B ∩ C) = 1
4 , Pr(A)Pr(B)Pr(C) = 1

8
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Union bound

Statement
We have

Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B) .

Definition
Consider any events A1, A2, . . . , Ak ⊆ Ω, then

Pr(A1 ∪ A2 ∪ . . . ∪ Ak) ≤ Pr(A1) + Pr(A2) + . . . + Pr(Ak) .
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One example in Seminar

Problem
Suppose that in your inbox, 70% of all email is spam, 90% of spam emails contain the word
“lottery”, and 5% of non-spam emails contain the word “lottery”. What is the probability that
an email selected uniformly at random is actually spam given that it contains the word
“lottery”?
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*Naive Bayes classifier - Illustration
◦ train a binary classifier h on training data

Figure: Illustration behind the Naive Bayes algorithm. source from link.

h(x) = arg max
y

Pr(y|x) = arg max
y

Pr(x|y)Pr(y)
Pr(x) = arg max

y

d∏
α=1

Pr(xα|y)Pr(y) .

▶ density estimation for Pr(x|y) → curse of dimensionality
▶ Assumption: features are conditionally independent given the label
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