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Figure: Borromean rings.
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Recall Probability...

o a metric/measure/function f of “event A occurs"

Definition (Probability)

Probability Pr : F — [0, 1] is a function that assigns a value to events
> nonnegativity: Pr(4) > 0
> normalization: Pr(Q2) =1

> countable additivity: if A; € F is a countable sequence of disjoint sets, then
PI‘(U?ilAz) = Z;.il PI‘(AZ)

o (Q,F) is a measurable space
o (Q, F,Pr) is a probability space
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Conditional probability

Problem

If the event B occurs, then what is the Qv’
probability of event A7
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Conditional probability

Problem

If the event B occurs, then what is the &

probability of event A7

Remark: Given additional information, we infer the outcome of a random trial.
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Conditional probability

*\4/ \
Problem )
If the event B occurs, then what is the v‘
probability of event A7
Q

Remark: Given additional information, we infer the outcome of a random trial.

Definition (Conditional probability)
Consider any two events A, B C Q, if Pr(B) > 0, the conditional probability is
Pr(AnN B)
Pr(A|B) = ——=
r(A[B) Pr(B)

Remark: the probability of event A occurs given that event B occurs.
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Partition theorem

Definition (Partition)

{Bi,...,Bn} C Q be a partition of the sample space Q if
> Q=U",B;.
> Pr(B;) >0, Vi € [n].
> BiNB; =0 Vi#j.
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Partition theorem

Definition (Partition)

{Bi,...,Bn} C Q be a partition of the sample space Q if
> Q=U",B;.
> Pr(B;) >0, Vi € [n].
>» BiNB;=0Vi#j.

Definition (Law of total probability)

Let {Bi,...,B,} C Q be a partition of the sample space Q. Consider any event A C 2, we
have

Pr(4) = z": Pr(AnB;) = zn:Pr(A|B¢)Pr(Bi) .

i=1

Remark: a special case: Pr(A) = Pr(AN B) + Pr(AN B°).
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From reason to result, from result to reason...

o law of total probability: from reason to result

> A: result/phenomenon

ZPr ) Pr(A|B;)

> {B;}" : reason
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vy

From reason to result, from result to reason...

o law of total probability: from reason to result

> A: result/phenomenon

ZPr ) Pr(A|B;)

> {B;}" : reason

In practice, we observe some phenomenon, and then infer which reason(s) cause this.
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From reason to result, from result to reason...

o law of total probability: from reason to result

> A: result/phenomenon

ZPr ) Pr(A|B;)

> {B;}" : reason
In practice, we observe some phenomenon, and then infer which reason(s) cause this.
o Bayes's theorem: from result to reason

> Pr(B;|A): event A occurs, infer the probability that the event is caused by B;

> Pr(B;): prior probability
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Bayes’s theorem

Theorem

Let {Bs,...,B,} C Q be a partition of the sample space ) such that Pr(B;) > 0, Vi € [n].
Consider any event A C , we have

Pr(B;|4) = Pr(4A) Pr(A)
_ Pr(A|B;)Pr(B;)

Y7, Pr(4]B;)Pr(B;)

Remark: special case with n = 2: Q) = BU B°.

Pr(A|B)Pr(B)

Pr(B|A) = Pr(A|B)Pr(B) + Pr(A|B¢)Pr(B¢)
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Example

Example
Consider a disease with an incidence rate of 1 in 10° among the population. There is a
diagnostic test the disease. For one person:

> If (s)he has this disease, this test is positive with probability at 9/10

> If (s)he doesn't have this disease, the test is positive with probability at 1/20
Question: tested with positive now, what is the probability that he/she has this disease?

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 8/ 14



Example

Example
Consider a disease with an incidence rate of 1 in 10° among the population. There is a
diagnostic test the disease. For one person:

> If (s)he has this disease, this test is positive with probability at 9/10

> If (s)he doesn't have this disease, the test is positive with probability at 1/20
Question: tested with positive now, what is the probability that he/she has this disease?

> result/phenomenon: tested with positive (event A)

> reasons:
o 1) has this disease (event B)
o 2) mistakes by the test (false alarm)
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Example

Example

Consider a disease with an incidence rate of 1 in 10°> among the population. There is a
diagnostic test the disease. For one person:

> If (s)he has this disease, this test is positive with probability at 9/10

> If (s)he doesn't have this disease, the test is positive with probability at 1/20
Question: tested with positive now, what is the probability that he/she has this disease?

> result/phenomenon: tested with positive (event A)
> reasons:
o 1) has this disease (event B)
o 2) mistakes by the test (false alarm)
Target: estimate Pr(B|A)
> prior: Pr(B) =107°
> Pr(A|B) = 0.9
> Pr(A|B€) =0.05
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Solutions

> prior: Pr(B) =107°
> Pr(A|B) = 0.9
> Pr(A|B¢) = 0.05

Solution
Denote A = event that he/she is tested with positive; B = event that he/she has this disease.

gl PXBNA) _ P(A[B)P(B) B P(A|B)Pr(B)
MBI = 54y = Br(An B) + Pr(ANBY) _ P(A[B)Pr(B) 1 P(A[BIPr(B")
0.9 x 107°
~ 0.00018

T 0.9x 1075 +0.05x (1—10-9)
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Independence
Pr(A|B) changes when B changes

Definition (Independence)
Event A and B are independent if Pr(A N B) = Pr(A)Pr(B).
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Independence
Pr(A|B) changes when B changes

Definition (Independence)
Event A and B are independent if Pr(A N B) = Pr(A)Pr(B).

Definition (mutually independent)
A collection of events Ay, Ag, ..., Ax C Q are independent if and only if

VIC[1,k], Pr(Njes4;) = []Pr(4,
jel
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Independence
Pr(A|B) changes when B changes

Definition (Independence)
Event A and B are independent if Pr(A N B) = Pr(A)Pr(B).

Definition (mutually independent)

A collection of events Ay, Ag, ..., Ax C Q are independent if and only if

VIC[1,k], Pr(Njes4;) = []Pr(4,
JjeI

Definition (pairwise independent)
A collection of events Ay, As, ..., A C Q are pairwise independent if and only if
VZ,] Q []., k],l * j, PT(AZ N AJ) = PI'(Al)PI‘(AJ) o
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Relationship between mutually independent and pairwise independent

o mutually independent = pairwise independent
o pairwise independent = mutually independent

Statement
Intuitive idea: two events A, B occur, leading to the case that C occurs
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Relationship between mutually independent and pairwise independent

o mutually independent = pairwise independent
o pairwise independent = mutually independent
Statement

Intuitive idea: two events A, B occur, leading to the case that C occurs
mutually independent: Pr(ABC) = Pr(A)Pr(B)Pr(C)
pairwise independent: Pr(ABC) = Pr(A|BC)Pr(BC) = Pr(A|BC)Pr(B)Pr(C)
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Relationship between mutually independent and pairwise independent
o mutually independent = pairwise independent

o pairwise independent = mutually independent

Statement

Intuitive idea: two events A, B occur, leading to the case that C occurs
mutually independent: Pr(ABC) = Pr(A)Pr(B)Pr(C)
pairwise independent: Pr(ABC) = Pr(A|BC)Pr(BC) = Pr(A|BC)Pr(B)Pr(C)

Example

» Two independent fair coin tosses
o A: First toss is H
o B: Second toss is H

» (': the two tosses had the same result
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Relationship between mutually independent and pairwise independent

o mutually independent = pairwise independent
o pairwise independent = mutually independent

Statement

Intuitive idea: two events A, B occur, leading to the case that C occurs
mutually independent: Pr(ABC) = Pr(A)Pr(B)Pr(C)

pairwise independent: Pr(ABC) = Pr(A|BC)Pr(BC) = Pr(A|BC)Pr(B)Pr(C)

Example

» Two independent fair coin tosses
o A: First toss is H
o B: Second toss is H

» (': the two tosses had the same result
Pr(AN B) =z = Pr(A)Pr(B)
Pr(ANC) = 7 =Pr(A)Pr(C) (similar to B)
Pr(ANBNC) = 1 # Pr(A)Pr(B)Pr(C) = %
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Union bound

Statement

We have
Pr(AUB) =Pr(A) +Pr(B) — Pr(ANB).
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Union bound

Statement

We have
Pr(AUB) =Pr(A) +Pr(B) — Pr(ANB).

Definition
Consider any events Ay, As, ..., A C €, then

Pr(A; UAsU...UA) <Pr(A;) +Pr(As) + ...+ Pr(Ag).

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 12/ 14



One example in Seminar

Problem

Suppose that in your inbox, 70% of all email is spam, 90% of spam emails contain the word
“lottery”, and 5% of non-spam emails contain the word “lottery”. What is the probability that
an email selected uniformly at random is actually spam given that it contains the word
“lottery”?
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*Naive Bayes classifier - lllustration

o train a binary classifier h on training data

Original data Estimation of first dimension Estimation of second dimension Resulting data distribution
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Figure: lllustration behind the Naive Bayes algorithm. source from link.
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Figure: lllustration behind the Naive Bayes algorithm. source from link.

d
h(x) = argmax Pr(y|x) = argmax —————"> = arg max H Pr(zq|y)Pr(y) .
Y Y Pr(x) Y

> density estimation for Pr(x|y) — curse of dimensionality
> Assumption: features are conditionally independent given the label

a=1
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