Discrete Mathematics and Its Applications 2 (CS147)

Lecture 9: Conditional probability, independence

Fanghui Liu

Department of Computer Science, University of Warwick, UK

Figure: Borromean rings.

Recall Probability...

 \circ a metric/measure/function f of "event A occurs"

Definition (Probability)

Probability $\Pr:\mathcal{F}\rightarrow[0,1]$ is a function that assigns a value to events

- nonnegativity: $\Pr(A) \ge 0$
- normalization: $Pr(\Omega) = 1$

▶ countable additivity: if $A_i \in \mathcal{F}$ is a countable sequence of disjoint sets, then $\Pr(\cup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \Pr(A_i)$

 $\begin{array}{l} \circ \ (\Omega, \mathcal{F}) \text{ is a measurable space} \\ \circ \ (\Omega, \mathcal{F}, Pr) \text{ is a probability space} \end{array}$

Conditional probability

Problem

If the event *B* occurs, then what is the probability of event *A*?

Conditional probability

Problem

If the event *B* occurs, then what is the probability of event *A*?

Remark: Given additional information, we infer the outcome of a random trial.

Conditional probability

Problem

If the event *B* occurs, then what is the probability of event *A*?

Remark: Given additional information, we infer the outcome of a random trial.

Definition (Conditional probability)

Consider any two events $A, B \subseteq \Omega$, if Pr(B) > 0, the conditional probability is

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}.$$

Remark: the probability of event A occurs given that event B occurs.

Partition theorem

Definition (Partition)

 $\{B_1,\ldots,B_n\}\subseteq \Omega$ be a partition of the sample space Ω if

- $\blacktriangleright \ \Omega = \cup_{i=1}^n B_i.$
- ▶ $\Pr(B_i) > 0, \forall i \in [n].$
- $\blacktriangleright B_i \cap B_j = \emptyset \ \forall i \neq j.$

Partition theorem

Definition (Partition)

 $\{B_1,\ldots,B_n\}\subseteq \Omega$ be a partition of the sample space Ω if

- $\blacktriangleright \ \Omega = \cup_{i=1}^n B_i.$
- ▶ $\Pr(B_i) > 0, \forall i \in [n].$
- $\blacktriangleright B_i \cap B_j = \emptyset \ \forall i \neq j.$

Definition (Law of total probability)

Let $\{B_1, \ldots, B_n\} \subseteq \Omega$ be a partition of the sample space Ω . Consider any event $A \subseteq \Omega$, we have

$$\Pr(A) = \sum_{i=1}^{n} \Pr(A \cap B_i) = \sum_{i=1}^{n} \Pr(A|B_i) \Pr(B_i).$$

Remark: a special case: $Pr(A) = Pr(A \cap B) + Pr(A \cap B^c)$.

From reason to result, from result to reason...

 \circ law of total probability: from reason to result

► *A*: result/phenomenon

$$\Pr(A) = \sum_{i=1}^{n} \Pr(B_i) \frac{\Pr(A|B_i)}{\Pr(A|B_i)}$$

From reason to result, from result to reason...

 \circ law of total probability: from reason to result

► *A*: result/phenomenon

$$\Pr(A) = \sum_{i=1}^{n} \Pr(B_i) \frac{\Pr(A|B_i)}{\Pr(A|B_i)}$$

• $\{B_i\}_{i=1}^n$: reason

In practice, we observe some phenomenon, and then infer which reason(s) cause this.

From reason to result, from result to reason...

 \circ law of total probability: from reason to result

► *A*: result/phenomenon

$$\Pr(A) = \sum_{i=1}^{n} \Pr(B_i) \frac{\Pr(A|B_i)}{\Pr(A|B_i)}$$

• $\{B_i\}_{i=1}^n$: reason

In practice, we observe some phenomenon, and then infer which reason(s) cause this. \circ Bayes's theorem: from result to reason

- ▶ $Pr(B_i|A)$: event A occurs, infer the probability that the event is caused by B_i
- $Pr(B_i)$: prior probability

Bayes's theorem

Theorem

Let $\{B_1, \ldots, B_n\} \subseteq \Omega$ be a partition of the sample space Ω such that $\Pr(B_i) > 0, \forall i \in [n]$. Consider any event $A \subseteq \Omega$, we have

$$\Pr(B_i|A) = \frac{\Pr(B_i \cap A)}{\Pr(A)} = \frac{\Pr(A|B_i)\Pr(B_i)}{\Pr(A)}$$
$$= \frac{\Pr(A|B_i)\Pr(B_i)}{\sum_{j=1}^n \Pr(A|B_j)\Pr(B_j)}$$

Remark: special case with n = 2: $\Omega = B \cup B^c$.

$$\Pr(B|A) = \frac{\Pr(A|B)\Pr(B)}{\Pr(A|B)\Pr(B) + \Pr(A|B^c)\Pr(B^c)}$$

Example

Example

Consider a disease with an incidence rate of 1 in 10^5 among the population. There is a diagnostic test the disease. For one person:

- If (s)he has this disease, this test is positive with probability at 9/10
- If (s)he doesn't have this disease, the test is positive with probability at 1/20 Question: tested with positive now, what is the probability that he/she has this disease?

Example

Example

Consider a disease with an incidence rate of $1\ {\rm in}\ 10^5$ among the population. There is a diagnostic test the disease. For one person:

- > If (s)he has this disease, this test is positive with probability at 9/10
- If (s)he doesn't have this disease, the test is positive with probability at 1/20 Question: tested with positive now, what is the probability that he/she has this disease?
 - ▶ result/phenomenon: tested with positive (event *A*)
 - reasons:
 - \circ 1) has this disease (event B)
 - 2) mistakes by the test (false alarm)

Example

Example

Consider a disease with an incidence rate of $1\ {\rm in}\ 10^5$ among the population. There is a diagnostic test the disease. For one person:

- If (s)he has this disease, this test is positive with probability at 9/10
- If (s)he doesn't have this disease, the test is positive with probability at 1/20 Question: tested with positive now, what is the probability that he/she has this disease?
 - ▶ result/phenomenon: tested with positive (event *A*)
 - reasons:
 - \circ 1) has this disease (event B)
 - \circ 2) mistakes by the test (false alarm)

Target: estimate $\Pr(B|A)$

- prior: $\Pr(B) = 10^{-5}$
- $\blacktriangleright \Pr(A|B) = 0.9$
- $\blacktriangleright \operatorname{Pr}(A|B^c) = 0.05$

Solutions

- ▶ prior: $Pr(B) = 10^{-5}$
- $\blacktriangleright \operatorname{Pr}(A|B) = 0.9$
- $\blacktriangleright \operatorname{Pr}(A|B^c) = 0.05$

Solution

Denote A = event that he/she is tested with positive; B = event that he/she has this disease.

$$\Pr(B|A) = \frac{\Pr(B \cap A)}{\Pr(A)} = \frac{\Pr(A|B)\Pr(B)}{\Pr(A \cap B) + \Pr(A \cap B^c)} = \frac{\Pr(A|B)\Pr(B)}{\Pr(A|B)\Pr(B) + \Pr(A|B^c)\Pr(B^c)}$$
$$= \frac{0.9 \times 10^{-5}}{0.9 \times 10^{-5} + 0.05 \times (1 - 10^{-5})} \approx 0.00018$$

Independence

 $\Pr(A|B)$ changes when B changes

Definition (Independence)

Event A and B are **independent** if $Pr(A \cap B) = Pr(A)Pr(B)$.

Independence

 $\Pr(A|B)$ changes when B changes

Definition (Independence)

Event A and B are independent if $Pr(A \cap B) = Pr(A)Pr(B)$.

Definition (mutually independent)

A collection of events $A_1, A_2, \ldots, A_k \subseteq \Omega$ are independent if and only if

$$\forall I \subseteq [1,k], \quad \Pr(\cap_{j \in I} A_j) = \prod_{j \in I} \Pr(A_j).$$

Independence

$\Pr(A|B)$ changes when B changes

Definition (Independence)

Event A and B are independent if $Pr(A \cap B) = Pr(A)Pr(B)$.

Definition (mutually independent)

A collection of events $A_1, A_2, \ldots, A_k \subseteq \Omega$ are independent if and only if

$$\forall I \subseteq [1,k], \quad \Pr(\cap_{j \in I} A_j) = \prod_{j \in I} \Pr(A_j).$$

Definition (pairwise independent)

A collection of events $A_1, A_2, \ldots, A_k \subseteq \Omega$ are pairwise independent if and only if

$$\forall i, j \subseteq [1, k], i \neq j, \quad \Pr(A_i \cap A_j) = \Pr(A_i)\Pr(A_j).$$

 \circ mutually independent \Rightarrow pairwise independent \circ pairwise independent \Rightarrow mutually independent

Statement

Intuitive idea: two events A, B occur, leading to the case that C occurs

 \circ mutually independent \Rightarrow pairwise independent \circ pairwise independent \Rightarrow mutually independent

Statement

Intuitive idea: two events A, B occur, leading to the case that C occurs mutually independent: Pr(ABC) = Pr(A)Pr(B)Pr(C)pairwise independent: Pr(ABC) = Pr(A|BC)Pr(BC) = Pr(A|BC)Pr(B)Pr(C)

 \circ mutually independent \Rightarrow pairwise independent \circ pairwise independent \Rightarrow mutually independent

Statement

Intuitive idea: two events A, B occur, leading to the case that C occurs mutually independent: Pr(ABC) = Pr(A)Pr(B)Pr(C)pairwise independent: Pr(ABC) = Pr(A|BC)Pr(BC) = Pr(A|BC)Pr(B)Pr(C)

Example

- Two independent fair coin tosses
 - \circ A: First toss is H
 - \circ B: Second toss is H
- C: the two tosses had the same result

 \circ mutually independent \Rightarrow pairwise independent \circ pairwise independent \Rightarrow mutually independent

Statement

Intuitive idea: two events A, B occur, leading to the case that C occurs mutually independent: Pr(ABC) = Pr(A)Pr(B)Pr(C)pairwise independent: Pr(ABC) = Pr(A|BC)Pr(BC) = Pr(A|BC)Pr(B)Pr(C)

Example

- Two independent fair coin tosses
 - \circ A: First toss is H
 - \circ B: Second toss is H
- \triangleright C: the two tosses had the same result

$$Pr(A \cap B) = \frac{1}{4} = Pr(A)Pr(B)$$

$$Pr(A \cap C) = \frac{1}{4} = Pr(A)Pr(C) \text{ (similar to } B\text{)}$$

$$Pr(A \cap B \cap C) = \frac{1}{4} \neq Pr(A)Pr(B)Pr(C) = \frac{1}{8}$$

$$CS147 \mid \text{Fanghui Liu, fanghui Liu, fa$$

Union bound

Statement

We have

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B).$$

Union bound

Statement

We have

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B).$$

Definition

Consider any events $A_1, A_2, \ldots, A_k \subseteq \Omega$, then

 $\Pr(A_1 \cup A_2 \cup \ldots \cup A_k) \leq \Pr(A_1) + \Pr(A_2) + \ldots + \Pr(A_k).$

One example in Seminar

Problem

Suppose that in your inbox, 70% of all email is spam, 90% of spam emails contain the word "lottery", and 5% of non-spam emails contain the word "lottery". What is the probability that an email selected uniformly at random is actually spam given that it contains the word "lottery"?

*Naive Bayes classifier - Illustration

 \circ train a binary classifier h on training data

Figure: Illustration behind the Naive Bayes algorithm. source from link.

*Naive Bayes classifier - Illustration

 \circ train a binary classifier h on training data

Figure: Illustration behind the Naive Bayes algorithm. source from link.

$$h(\boldsymbol{x}) = \arg\max_{y} \Pr(y|\boldsymbol{x}) = \arg\max_{y} \frac{\Pr(\boldsymbol{x}|y)\Pr(y)}{\Pr(\boldsymbol{x})} = \arg\max_{y} \prod_{\alpha=1}^{d} \Pr(x_{\alpha}|y)\Pr(y) \,.$$

▶ density estimation for Pr(x|y) → curse of dimensionality
 ▶ Assumption: features are conditionally independent given the label