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Why introduce randomness/probability in this course?

Randomness is everywhere!
▶ randomized algorithms: correct with high probability
▶ data sampling
▶ noise

Problem (Open question in complexity theory)
One of the biggest open questions in complexity theory is

whether randomness really helps?

▶ randomized algorithms
▶ de-randomized techniques
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Quick-sort

◦ consists of 3 steps:
▶ Select a pivot from the array
▶ partitioning the other elements into two sub-arrays, according to whether they are less

than or greater than the pivot.
▶ recursively do this: a divide-and-conquer algorithm

5 3 9 8 7 2 4 1 6 5

Step 1: Choose a pivot

5 3 9 8 7 2 4 1 6 5

Step 2: Lesser values go to the left, equal or greater values go to the right

3 2 4 1 5 5 9 8 7 6

Step 3: Repeat step 1 with the two sub lists

3 2 4 1 5 5 9 8 7 6

Step 4: Repeat step 2 with the sub lists:

1 3 2 4 5 5 6 9 8 7

Step 5: and again and again!

1 3 2 4 5 5 6 9 8 7

1 3 2 4 5 5 6 7 9 8

1 3 2 4 5 5 6 7 9 8

1 2 3 4 5 5 6 7 8 9

1 2 3 4 5 5 6 7 8 9

1 2 3 4 5 5 6 7 8 9

1 2 3 4 5 5 6 7 8 9

1
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Deterministic Quick-sort algorithm

Algorithm 1: Deterministic Quick-sort

Input: An array A[1, 2, . . . , n]
Output: An sorted array A[1, 2, . . . , n]

1 pivot ← A[n] % we can choose any position we want.;
2 Ssmaller ← [], Slarger ← [];
3 for i = 1, . . . , n do
4 if A[i] ≤ pivot then
5 Ssmaller.append(A[i]);
6 end
7 else Slarger.append(A[i]);
8 end
9 return [Quick-sort(Ssmaller, pivot, Slarger) ];

T (n) = T (a) + T (n− a) + Θ(n)
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Running time analysis

Statement (Worst case Θ(n2))
If the array is {n, n− 1, n− 2, · · · , 2, 1}, a sorted array, then there will be a total of
n(n−1)

2 = Θ(n2) comparisons.

How to improve it?

▶ How to choose pivot is important!
▶ Randomly choose it.

Statement
Worst-case expected-time bound is Θ(n log n).

We will prove later in this module.
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Recall some knowledge about set theory...

▶ A set A is finite if it has finite elements, e.g., A = {a1, a2, · · · , an}; otherwise it is infinite.

▶ A set A is countable if it has a bijection to a subset of N, i.e., it can be “listed";
otherwise it is uncountable.

▶ A finite set is always countable. If a set is countably infinite, then it is in the form of
A = {a1, a2, · · · , an, · · · }. Real numbers R or any interval [a, b] ∈ R is uncountable.

▶ The power set of A is the collection of all of its subsets, i.e., 2A = {B : B ⊂ A}.
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Randomness and sample space

◦ Uncertainty phenomenon: there are some phenomenon that might occur or not.
◦ Random trial: study the uncertainty phenomenon by some observations and experiments.
◦ In probability theory, we assume random trials can be repeated under the same setting.

Definition (Sample space)
One possible outcome of a random trial is a sample point, denoted as ω. The set of all possible
outcome is called the sample space, denoted as Ω.

Remark: the outcome of random trials can be different, unpredictable

Example
▶ toss a coin twice: (head, head), (head, tail), (tail,head), (tail,tail)
▶ Ω = {HH, HT, TH, TT}
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Events
Definition
We define event as a set of outcomes, denoted as A ⊆ Ω. We call an event occurs if and only
if some sample point(s) included in A occur.

Given a set A, we can confirm whether ω ∈ A or ω < A for any ω ∈ Ω.

Example
▶ the results are the same at each time: (head, head),(tail,tail)
▶ the tail occurs at most once: (head, head), (head, tail), (tail,head)

Example (Experiment with countably infinite outcomes)
Consider an experiment: keep tossing a coin until the head appears.
▶ countably infinite outcomes: H, TH, TTH, TTTH, · · ·
▶ we’re interested in:

Ak = “H appears exactly in the k-th toss"
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Property of events

Property (using Venn diagram)
An event is a set!
▶ complement: Ac = {ω : ω < A}
▶ union: A ∪B = {ω : ω ∈ A, or ω ∈ B}
▶ intersection: A ∩B = {ω : ω ∈ A, and ω ∈ B}
▶ difference: A−B = {ω : ω ∈ A, and ω < B}
▶ symmetric difference: A∆B = (A−B) ∪ (B −A)
▶ Event A and B are called disjoint if A ∩B = ∅.

Remark: Not arbitrary event can be assigned to a probability.
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*σ field
When studying random trials, given an event A, we know the following information

▶ A occurs ⇒ Ac doesn’t occur
▶ if A1, A2, · · · , occur, then ∪∞

i=1Ai occurs.

Definition (σ-field)
F is a set of events, i.e., a (nonempty) collection of the subsets of Ω. F is called σ-field if
▶ A ∈ F , then Ac ∈ F
▶ Ai ∈ F , i = 1, 2, . . ., then ∪∞

i=1Ai ∈ F
▶ ∅ ∈ F

Remark: ◦ F = {∅, Ω}, F = {∅, A, Ac, Ω}, F = 2Ω are all σ-fields.
◦ If A, B ∈ F , then A ∩B, A−B, A∆B ∈ F
Proof: Using De Morgan’s laws: A ∩B = (Ac ∪Bc)c.
◦ If F1,F∈ are σ-fields, then F1 ∩ F2 is also a σ-field.
◦ (Ω,F) is called a measurable space
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*Example: Intuition on a set of “measurable" events

◦ a small ball in a box equally split into four
regions (from the front): Z1, Z2, Z3, Z4
◦ shake the box and the ball rolls randomly
◦ which region does the ball stay?

Z1 Z2

Z3 Z4

Z1

Z3

▶ case 1: a transparent box (left)
▶ case 2: half covered by opaque cloth

sample space Ω = {Z1, Z2, Z3, Z4}
▶ case 1: F1 : a collection of all subsets of Ω
▶ case 2: F2 is

F2 = {Ω, ∅, {Z1}, {Z2, Z3, Z4},
{Z3}, {Z1, Z2, Z4}, {Z1, Z3}, {Z2, Z4}}

Remark: For some random trials, we know the
ball can stay in the covered area, but we don’t
know it stays at Z2 or Z4. That means, we
don’t know the event {Z2} occurs or not.

the event {Z2} is F1-measurable but not
F2-measurable!
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▶ case 2: half covered by opaque cloth

sample space Ω = {Z1, Z2, Z3, Z4}
▶ case 1: F1 : a collection of all subsets of Ω
▶ case 2: F2 is

F2 = {Ω, ∅, {Z1}, {Z2, Z3, Z4},
{Z3}, {Z1, Z2, Z4}, {Z1, Z3}, {Z2, Z4}}

Remark: For some random trials, we know the
ball can stay in the covered area, but we don’t
know it stays at Z2 or Z4. That means, we
don’t know the event {Z2} occurs or not.

the event {Z2} is F1-measurable but not
F2-measurable!
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Probability

◦ a metric/measure/function f of “event A occurs": frequency interpretation of probability

▶ Suppose we perform the experiment for n times and denote N(A) as the number of times
event A occurs, then we have f ≈ N(A)

n .

Definition (Probability)
Probability Pr : F → [0, 1] is a function that assigns a value to events
▶ nonnegativity: Pr(A) ≥ 0
▶ normalization: Pr(Ω) = 1
▶ countable additivity: if Ai ∈ F is a countable sequence of disjoint sets, then

Pr(∪∞
i=1Ai) =

∑∞
i=1 Pr(Ai)

◦ (Ω,F) is a measurable space
◦ (Ω,F , Pr) is a probability space
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Properties of probability

▶ ∀A ∈ F , we have Pr(Ac) = 1− Pr(A).
▶ If A, B ∈ F and A ⊆ B, then Pr(B) = Pr(A) + Pr(B −A) ≥ Pr(A).
▶ If A, B ∈ F , then Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B).
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