Discrete Mathematics and Its Applications 2 (CS147)

Lecture 7: Recurrence relations and generating function

Fanghui Liu
Department of Computer Science, University of Warwick, UK

Target: solving recurrence equation

Definition (Recurrence equation or difference equation)

$$
a_{n}=f\left(a_{n-1}, a_{n-2}, \cdots, a_{0}\right), \quad \text { under certain initializations. }
$$

Remark: a) f is a given function
b) depending on some or all of its past values a_{n-1}, a_{n-2}, \cdots.

Target: solving recurrence equation

Definition (Recurrence equation or difference equation)

$$
a_{n}=f\left(a_{n-1}, a_{n-2}, \cdots, a_{0}\right), \quad \text { under certain initializations. }
$$

Remark: a) f is a given function
b) depending on some or all of its past values a_{n-1}, a_{n-2}, \cdots.

Example

$a_{n}=4 a_{n-1}-2$ for $n \geq 2$ and initialization $a_{1}=2$.

Target: solving recurrence equation

Definition (Recurrence equation or difference equation)

$$
a_{n}=f\left(a_{n-1}, a_{n-2}, \cdots, a_{0}\right), \quad \text { under certain initializations. }
$$

Remark: a) f is a given function
b) depending on some or all of its past values a_{n-1}, a_{n-2}, \cdots.

Example

$a_{n}=4 a_{n-1}-2$ for $n \geq 2$ and initialization $a_{1}=2$.

Example (Fibonacci sequence)

$a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 3$ and initialization $a_{1}=0, a_{2}=1$.

Definitions in LINEAR recurrence equations

Definition (linear)

A recurrence equation is called linear if it can be rewritten a linear function of its past values a_{n-1}, a_{n-2}, \cdots.

Definitions in LINEAR recurrence equations

Definition (linear)

A recurrence equation is called linear if it can be rewritten a linear function of its past values a_{n-1}, a_{n-2}, \cdots.

Definition (order)

The order of a linear recurrence equation is k if a_{n} is a linear function of k past values $a_{n-1}, a_{n-2}, \cdots, a_{n-k}$.

Definitions in LINEAR recurrence equations

Definition (linear)

A recurrence equation is called linear if it can be rewritten a linear function of its past values a_{n-1}, a_{n-2}, \cdots.

Definition (order)

The order of a linear recurrence equation is k if a_{n} is a linear function of k past values $a_{n-1}, a_{n-2}, \cdots, a_{n-k}$.

Definition (constant coefficients)

A linear recurrence equation has constant coefficients if coefficients of a_{n-1}, a_{n-2}, \cdots are all constant, i.e., do not depend on the indices $n, n-1$, etc.

Definitions in LINEAR recurrence equations

Definition (linear)

A recurrence equation is called linear if it can be rewritten a linear function of its past values a_{n-1}, a_{n-2}, \cdots.

Definition (order)

The order of a linear recurrence equation is k if a_{n} is a linear function of k past values $a_{n-1}, a_{n-2}, \cdots, a_{n-k}$.

Definition (constant coefficients)

A linear recurrence equation has constant coefficients if coefficients of a_{n-1}, a_{n-2}, \cdots are all constant, i.e., do not depend on the indices $n, n-1$, etc.

Definition (homogeneous)

A linear recurrence equation is called homogeneous if a_{n} only depends on its past values

Generating function

Definition

The generating function for the sequence $a_{0}, a_{1}, \ldots, a_{n}, \ldots$ of real number is given by

$$
G(x):=a_{0}+a_{1} x+\cdots+a_{n} x^{n}+\cdots=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

Solving Nonhomogeneous, Constant Coefficients, and Linear Difference Equations...

Examples: from sequence to $G(x)$

Example

The generating function for the sequence $1,1, \ldots$ is

$$
G(x):=1+x+x^{2}+\ldots=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \quad \text { for }|x|<1
$$

Examples: from sequence to $G(x)$

Example

The generating function for the sequence $1,1, \ldots$ is

$$
G(x):=1+x+x^{2}+\ldots=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \quad \text { for }|x|<1
$$

Example

The generating function for the sequence $1, a, a^{2}, a^{3}, \ldots$ is

$$
G(x):=1+a x+a^{2} x^{2}+\ldots=\sum_{n=0}^{\infty} a^{n} x^{n}=\frac{1}{1-a x} \quad \text { for }|a x|<1 .
$$

Examples: from $G(x)$ to sequences

Example

Let $G(x)=\frac{1}{(1-x)^{2}}$, find the coefficients a_{0}, a_{1}, \ldots in the expansion $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$.

Examples: from $G(x)$ to sequences

Example

Let $G(x)=\frac{1}{(1-x)^{2}}$, find the coefficients a_{0}, a_{1}, \ldots in the expansion $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$.

Proof.

Recall $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$, we have

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{1}{1-x}\right)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\sum_{n=0}^{\infty} x^{n}\right)=\sum_{n=0}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{n}\right)=0+\sum_{n=1}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{n}\right)
$$

Examples: from $G(x)$ to sequences

Example

Let $G(x)=\frac{1}{(1-x)^{2}}$, find the coefficients a_{0}, a_{1}, \ldots in the expansion $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$.

Proof.

Recall $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$, we have

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{1}{1-x}\right)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\sum_{n=0}^{\infty} x^{n}\right)=\sum_{n=0}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{n}\right)=0+\sum_{n=1}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{n}\right) \\
\Rightarrow \frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1}=\sum_{n=0}^{\infty}(n+1) x^{n} \\
\Rightarrow \frac{1}{(1-x)^{2}}=\sum_{n=0}^{\infty}(n+1) x^{n}
\end{gathered}
$$

Some useful power series and their closed forms

[remember to check the convergence condition in the calculus textbook.]

$$
\begin{aligned}
\frac{1}{1-a x} & =\sum_{i=0}^{\infty} a^{i} x^{i} \\
\frac{1}{(1-a x)^{2}} & =\sum_{i=0}^{\infty}(i+1) a^{i} x^{i} \\
\frac{1}{(1+a x)^{n}} & =\sum_{i=0}^{\infty}\binom{-n}{i} a^{i} x^{i} \\
\ln (1+a x) & =\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i} a^{i} x^{i} \\
\exp (a x) & =\sum_{i=0}^{\infty} \frac{1}{i!} a^{i} x^{i}
\end{aligned}
$$

Using generating function to solve recurrence functions

Example

Considering the following iteration:

$$
a_{n}=8 a_{n-1}+10^{n-1}, \forall n \geq 1, \text { with } a_{0}=1
$$

Using generating function to solve recurrence functions

Example

Considering the following iteration:

$$
a_{n}=8 a_{n-1}+10^{n-1}, \forall n \geq 1, \text { with } a_{0}=1
$$

Way 1.

$$
\begin{aligned}
G(x) & =\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+\sum_{n=1}^{\infty} a_{n} x^{n}=a_{0}+\sum_{n=1}^{\infty}\left(8 a_{n-1}+10^{n-1}\right) x^{n} \\
& =1+8 \sum_{n=1}^{\infty} a_{n-1} x^{n}+\sum_{n=1}^{\infty} 10^{n-1} x^{n}=1+8 x \sum_{n=1}^{\infty} a_{n-1} x^{n-1}+\frac{x}{1-10 x} \\
& =1+8 x \sum_{n=0}^{\infty} a_{n} x^{n}+\frac{x}{1-10 x}=1+8 x G(x)+\frac{x}{1-10 x} .
\end{aligned}
$$

Way 2.

Recall $a_{n}=8 a_{n-1}+10^{n-1}$ with $n \geq 1$,

$$
\begin{aligned}
G(x) & =a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots \\
8 x G(x) & =+8 a_{0} x+8 a_{1} x^{2}+\cdots+8 a_{n-1} x^{n}+\cdots \\
\hline(1-8 x) G(x) & =a_{0}+10^{0} x+10^{1} x^{2}+\cdots+10^{n-1} x^{n}+\cdots
\end{aligned}
$$

Way 2.

Recall $a_{n}=8 a_{n-1}+10^{n-1}$ with $n \geq 1$,

$$
\begin{aligned}
G(x) & =a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots \\
8 x G(x) & =+8 a_{0} x+8 a_{1} x^{2}+\cdots+8 a_{n-1} x^{n}+\cdots \\
(1-8 x) G(x) & =a_{0}+10^{0} x+10^{1} x^{2}+\cdots+10^{n-1} x^{n}+\cdots \\
& \Rightarrow(1-8 x) G(x)=1+\frac{10^{0} x}{1-10 x}
\end{aligned}
$$

Solutions

To be continued.

$$
G(x)(1-8 x)=1+\frac{x}{1-10 x}=\frac{1-9 x}{1-10 x},
$$

Solutions

To be continued.

$$
G(x)(1-8 x)=1+\frac{x}{1-10 x}=\frac{1-9 x}{1-10 x},
$$

which implies

$$
\begin{aligned}
G(x) & =\frac{1-9 x}{(1-10 x)(1-8 x)} \\
& \triangleq \frac{A}{1-10 x}+\frac{B}{1-8 x}
\end{aligned}
$$

Solutions

To be continued.

$$
G(x)(1-8 x)=1+\frac{x}{1-10 x}=\frac{1-9 x}{1-10 x},
$$

which implies

$$
\begin{aligned}
G(x) & =\frac{1-9 x}{(1-10 x)(1-8 x)} \\
& \triangleq \frac{A}{1-10 x}+\frac{B}{1-8 x} .
\end{aligned}
$$

That means

$$
(A+B)-(8 A+10 B) x=1-9 x,
$$

that means $A+B=1$ and $8 A+10 B=9$. We have $A=B=\frac{1}{2}$.

Solutions

To be continued.
Accordingly, we have

$$
\begin{aligned}
G(x) & =\frac{1}{2} \frac{1}{1-10 x}+\frac{1}{2} \frac{1}{1-8 x} \\
& =\frac{1}{2} \sum_{n=0}^{\infty}(10 x)^{n}+\frac{1}{2} \sum_{n=0}^{\infty}(8 x)^{n}
\end{aligned}
$$

Solutions

To be continued.
Accordingly, we have

$$
\begin{aligned}
G(x) & =\frac{1}{2} \frac{1}{1-10 x}+\frac{1}{2} \frac{1}{1-8 x} \\
& =\frac{1}{2} \sum_{n=0}^{\infty}(10 x)^{n}+\frac{1}{2} \sum_{n=0}^{\infty}(8 x)^{n},
\end{aligned}
$$

which implies

$$
\begin{aligned}
& G(x)=\sum_{n=0}^{\infty}\left(\frac{1}{2}\left(10^{n}+8^{n}\right)\right) x^{n} . \\
& \Rightarrow a_{n}=\frac{1}{2}\left(10^{n}+8^{n}\right), \quad \forall n \geq 1 .
\end{aligned}
$$

Summary

Given the recurrence equation $a_{n}=f\left(a_{n-1}, \cdots\right)$ and the generating function $G(x)$

Summary

Given the recurrence equation $a_{n}=f\left(a_{n-1}, \cdots\right)$ and the generating function $G(x)$

- obtain the formulation of $G(x)$
- taking a_{n} into $G(x)$
- remove the recurrence from $G(x)$ and simplify it

Summary

Given the recurrence equation $a_{n}=f\left(a_{n-1}, \cdots\right)$ and the generating function $G(x)$

- obtain the formulation of $G(x)$
- taking a_{n} into $G(x)$
- remove the recurrence from $G(x)$ and simplify it
- partial fraction decomposition of a rational expression

Summary

Given the recurrence equation $a_{n}=f\left(a_{n-1}, \cdots\right)$ and the generating function $G(x)$

- obtain the formulation of $G(x)$
- taking a_{n} into $G(x)$
- remove the recurrence from $G(x)$ and simplify it
- partial fraction decomposition of a rational expression
- series expansion and summation
- equate the coefficients of x^{n}
* Characteristic root method ${ }^{1}$
- normally, the order is smaller than 2

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}, \quad \text { with initializations on } a_{1}, a_{2} .
$$

[^0]* Characteristic root method ${ }^{1}$
- normally, the order is smaller than 2

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}, \quad \text { with initializations on } a_{1}, a_{2} .
$$

- characteristic equation: $r^{2}-c_{1} r-c_{2}=0$

[^1]
* Characteristic root method ${ }^{1}$

- normally, the order is smaller than 2

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}, \quad \text { with initializations on } a_{1}, a_{2}
$$

- characteristic equation: $r^{2}-c_{1} r-c_{2}=0$
- find two roots r_{1} and r_{2}
- the roots are different, $a_{n}=A_{1} r_{1}^{n}+A_{2} r_{2}^{n}$
- the roots are the same, $a_{n}=\left(A_{1}+A_{2} n\right) r_{1}^{n}$
- two unknown constants A_{1} and A_{2} are determined by the given initial conditions

[^2]
* Characteristic root method ${ }^{1}$

- normally, the order is smaller than 2

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}, \quad \text { with initializations on } a_{1}, a_{2} .
$$

- characteristic equation: $r^{2}-c_{1} r-c_{2}=0$
- find two roots r_{1} and r_{2}
- the roots are different, $a_{n}=A_{1} r_{1}^{n}+A_{2} r_{2}^{n}$
- the roots are the same, $a_{n}=\left(A_{1}+A_{2} n\right) r_{1}^{n}$
- two unknown constants A_{1} and A_{2} are determined by the given initial conditions Non-homogeneous part: a bit complex...

[^3]
[^0]: ${ }^{1}$ https://itk.ilstu.edu/faculty/chungli/DIS300/dis300chapter8.pdf if you're interested in.

[^1]: ${ }^{1}$ https://itk.ilstu.edu/faculty/chungli/DIS300/dis300chapter8.pdf if you're interested in.

[^2]: ${ }^{1}$ https://itk.ilstu.edu/faculty/chungli/DIS300/dis300chapter8.pdf if you're interested in.

[^3]: ${ }^{1}$ https://itk.ilstu.edu/faculty/chungli/DIS300/dis300chapter8.pdf if you're interested in.

