Discrete Mathematics and Its Applications 2 (CS147)

Lecture 4: Bubble-sort

Fanghui Liu

Department of Computer Science, University of Warwick, UK

Logistics: Homework 1...

Department of Computer Science

Study with us - | Teaching - | Research - | People - | News | Events - | Outreach - | Welfare - | Vacancies | Intranet △

Online Material

DEIEVALLE TEALLOUDA AUGULELLULE INVICA

- IDPV Algorithms.
- [Guichard] An Introduction to Combinatorics and Graph Theory.
- [Aspnes] Notes on Discrete Mathematics
- [Mitzenmacher and Unfal] Probability and Computing.
- [Durrett] Elementary Probability for Applications.
- . [GW] Probability: An Introduction.

Assessment:

Final exam (80%). Two Homework Assignments (10% each).

- Assignment 1: [homework1 ndf] deadline: Mon 5 Feb. 2024 (12nm GMT).
- LaTeX template for answering questions if you prefer (template tex)

Assignment 2:

WARWICH

- Contents of Lectures and Seminars:
- · Available at this page.

Try to answer ALL questions. Before you start, carefully read the following instructions below:

- · If you are writing the answers by hand, then you must:
 - (1) Write them on A4 pages.
 - (2) Convert them into .pdf formats (for example, by taking pictures from your phones and then using some freely available online tool which converts .jpeg files into .pdf files).
 - (3) Merge all of them into a SINGLE .ndf file.
 - (4) Ensure that your handwriting (as captured in the .pdf file) is clear and legible.

Otherwise, if you want, then you are also free to type the solutions in a computer and then convert them into a SINGLE .pdf file (using some free online tool for converting files into .pdf formats).

Remark: If you would like to type the solutions in a computer via LATEX. I suggest to use the online LATEX editor Overleaf, see a tutorial on https://www.overleaf.com/learn/latex/ Tutorials. A template for Assignment 1 can be found on the module webpage with basic common and useful latex constructs. When finishing the homework, you need to download this .pdf file and upload it on tabula.

- Answer each question in a separate page, and complete the answer of a given question within a single page. Thus, overall the file you upload in tabula should consist of (at most) 5 pages, where each page should be devoted to the answer of one question. If you take more than one page to answer a question, then only the first page of the answer will be marked.
- · Write down your university ID number on the top of each page.
- · Upload your answers in tabula in a SINGLE file in .pdf format.

If you fail to follow any of these instructions, then your submission may not be marked at all.

Further comments:

· As a general rule, try to be precise and to the point in your answers, instead of being verbose and writing long paragraphs to explain something that can be concisely summarised in a few sentences.

Clarifications in Lecture 2: Example

Example

Given
$$f(n) = 2^{\sqrt{\ln n}}$$
 and $g(n) = n^{0.0001}$, check $f(n) = \mathcal{O}(g(n))$ and $f(n) \neq \Omega(g(n))$.

Clarifications in Lecture 2: Example

Example

Given
$$f(n) = 2^{\sqrt{\ln n}}$$
 and $g(n) = n^{0.0001}$, check $f(n) = \mathcal{O}(g(n))$ and $f(n) \neq \Omega(g(n))$.

Proof.

Take the logarithmic operation of f(n) and g(n)...Updated: We can prove it by the definition. We prove $f(n) = \mathcal{O}(g(n))$ as an example, that means, we need to find c > 0 and n > N such that $f(n) \leq cg(n)$

$$\begin{split} & 2^{\sqrt{\ln n}} \leq c n^{0.0001} & \Leftrightarrow \sqrt{\ln n} \ln 2 \leq \ln c + 0.0001 \ln n \quad \text{[taking } c \geq 1 \text{ for nonnegativity]} \\ & \Leftrightarrow \sqrt{\ln n} \ln 2 \leq 0.0001 \ln n \quad \text{[taking } c = 1 \text{ for simplicity]} \\ & \Leftrightarrow \sqrt{\ln n} \geq 10^4 \ln 2 \quad \Leftrightarrow n \geq e^{10^8 (\ln 2)^2} := N \,. \end{split}$$

We conclude the proof by taking c = 1 and $N := e^{10^8 (\ln 2)^2}$.

Sorting (Problem definition)

 \circ Input: Array $A[1, 2, \dots, n]$ of n numbers.

 \circ $\overline{\text{Output}}:$ The same array with the same numbers, but sorted in an increasing order.

Sorting (Problem definition)

 \circ Input: Array $A[1, 2, \dots, n]$ of n numbers.

 \circ $\overline{\text{Output}}:$ The same array with the same numbers, but sorted in an increasing order.

Example

```
Input: A { [7] [6] [8] [4] [9] }
Output: A { [4] [6] [7] [8] [9] }
```

Sorting (Problem definition)

 \circ Input: Array $A[1, 2, \dots, n]$ of n numbers.

• Output: The same array with the same numbers, but sorted in an increasing order.

Example

```
Input: A { [7] [6] [8] [4] [9] }
Output: A { [4] [6] [7] [8] [9] }
```

Assumption

We will assume that $A[k] \neq A[l]$ for all $k, l \in [1, n]$, $k \neq l$.

It is straightforward to extend our analysis when the input array contains duplicate entries.

• Keep comparing successive entries A[j] and A[j+1].

▶ Keep comparing successive entries A[j] and A[j+1].

• Whenever we see that A[j] > A[j+1], we swap the positions of these two entries.

- ▶ Keep comparing successive entries A[j] and A[j+1].
- Whenever we see that A[j] > A[j+1], we swap the positions of these two entries.
- ▶ We stop when we reach a stage where no two successive entries can be swapped.

- Keep comparing successive entries A[j] and A[j+1].
- Whenever we see that A[j] > A[j+1], we swap the positions of these two entries.
- ▶ We stop when we reach a stage where no two successive entries can be swapped.

The entries are in correct sorted order.

- ▶ Keep comparing successive entries A[j] and A[j+1].
- Whenever we see that A[j] > A[j+1], we swap the positions of these two entries.
- ▶ We stop when we reach a stage where no two successive entries can be swapped.

The entries are in correct sorted order.

Key message

Bubble: We always put the larger number to the end.

[3] [1] [5] [6] [7] [2] [8] [4] first round: [3] [1] [5] [6] [7] [2] [8] [4]

[3] [1] [5] [6] [7] [2] [8] [4] first round: [3] [1] [5] [6] [7] [2] [8] [4] [1] [3] [5] [6] [7] [2] [4] [8]

[3] [1] [5] [6] [7] [2] [8] [4] first round: [3] [1] [5] [6] [7] [2] [8] [4] **[**1] [3] [5] [6] [7] [2] [4] [8] [1] [3] [5] [6] [7] [2] [8] [4]

[3]	[1]	[5]	[6]	[7]	[2]	[8]	[4]			
first round:										
[3]	[1]	[5]	[6]	[7]	[2]	[8]	[4]			
[1]	[3]	[5]	[6]	[7]	[2]	[4]	[8]			
[1]	[3]	[5]	[6]	[7]	[2]	[8]	[4]			
[1]	[3]	[5]	[6]	[7]	[2]	[4]	[8]			

[1]	[5]	[6]	[7]	[2]	[8]	[4]			
first round:									
[1]	[5]	[6]	[7]	[2]	[8]	[4]			
[3]	[5]	[6]	[7]	[2]	[4]	[8]			
[3]	[5]	[6]	[7]	[2]	[8]	[4]			
[3]	[5]	[6]	[7]	[2]	[4]	[8]			
	[1] [3] [3]	[1] [5] [3] [5] [3] [5]	first r [1] [5] [6] [3] [5] [6] [3] [5] [6]	first round [1] [5] [6] [7] [3] [5] [6] [7] [3] [5] [6] [7]	first round: [1] [5] [6] [7] [2] [3] [5] [6] [7] [2] [3] [5] [6] [7] [2]	[1] [5] [6] [7] [2] [8] first round: [1] [5] [6] [7] [2] [8] [3] [5] [6] [7] [2] [8] [3] [5] [6] [7] [2] [4] [3] [5] [6] [7] [2] [8] [3] [5] [6] [7] [2] [8]			

. . .

[3]	[1]	[5]	[6]	[7]	[2]	[8]	[4]			
		f	first r	ound	:					
[3]	[1]	[5]	[6]	[7]	[2]	[8]	[4]			
[1]	[3]	[5]	[6]	[7]	[2]	[4]	[8]			
[1]	[3]	[5]	[6]	[7]	[2]	[8]	[4]			
[1]	[3]	[5]	[6]	[7]	[2]	[4]	[8]			
[1]	[3]	[5]	[6]	[7]	[2]	[8]	[4]			

[3]	[1]	[5]	[6]	[7]	[2]	[8]	[4]
		f	first r	ound	:		
[3]	[1]	[5]	[6]	[7]	[2]	[8]	[4]
[1]	[3]	[5]	[6]	[7]	[2]	[4]	[8]
[1]	[3]	[5]	[6]	[7]	[2]	[8]	[4]
[1]	[3]	[5]	[6]	[7]	[2]	[4]	[8]
[1]	[3]	[5]	[6]	[7]	[2]	[8]	[4]
[1]	[3]	[5]	[6]	[2]	[7]	[8]	[4]

[3]	[1]	[5]	[6]	[7]	[2]	[8]	[4]
		1	first r	ound	:		
[3]	[1]	[5]	[6]	[7]	[2]	[8]	[4]
[1]	[3]	[5]	[6]	[7]	[2]	[4]	[8]
[1]	[3]	[5]	[6]	[7]	[2]	[8]	[4]
[1]	[3]	[5]	[6]	[7]	[2]	[4]	[8]
[1]	[3]	[5]	[6]	[7]	[2]	[8]	[4]
[1]	[3]	[5]	[6]	[2]	[7]	[8]	[4]
[1]	[3]	[5]	[6]	[2]	[7]	[8]	[4]
[1] [1]	[3] [3]	[5] [5]	[6] [6]	[7] [2]	<mark>[2]</mark> [7]	[8] [8]	[4] [4]

[3]	[1]	[5]	[6]	[7]	[2]	[8]	[4]
		f	first r	ound	:		
[3]	[1]	[5]	[6]	[7]	[2]	[8]	[4]
[1]	[3]	[5]	[6]	[7]	[2]	[4]	[8]
[1]	[3]	[5]	[6]	[7]	[2]	[8]	[4]
[1]	[3]	[5]	[6]	[7]	[2]	[4]	[8]
[1]	[3]	[5]	[6]	[7]	[2]	[8]	[4]
[1]	[3]	[5]	[6]	[2]	[7]	[8]	[4]
[1]	[3]	[5]	[6]	[2]	[7]	[8]	[4]
[1]	[3]	[5]	[6]	[2]	[7]	[8]	[4]

[3]	[1]	[5]	[6]	[7]	[2]	[8]	[4]			
first round:										
[3]	[1]	[5]	[6]	[7]	[2]	[8]	[4]			
[1]	[3]	[5]	[6]	[7]	[2]	[4]	[8]			
[1]	[3]	[5]	[6]	[7]	[2]	[8]	[4]			
[1]	[3]	[5]	[6]	[7]	[2]	[4]	[8]			
[1]	[3]	[5]	[6]	[7]	[2]	[8]	[4]			
[1]	[3]	[5]	[6]	[2]	[7]	[8]	[4]			
[1]	[3]	[5]	[6]	[2]	[7]	[8]	[4]			
[1]	[3]	[5]	[6]	[2]	[7]	[8]	[4]			
[1]	[3]	[5]	[6]	[2]	[7]	[8]	[4]			

[3]	[1]	[5]	[6]	[7]	[2]	[8]	[4]			
first round:										
[3]	[1]	[5]	[6]	[7]	[2]	[8]	[4]			
[1]	[3]	[5]	[6]	[7]	[2]	[4]	[8]			
[1]	[3]	[5]	[6]	[7]	[2]	[8]	[4]			
[1]	[3]	[5]	[6]	[7]	[2]	[4]	[8]			
[1]	[3]	[5]	[6]	[7]	[2]	[8]	[4]			
[1]	[3]	[5]	[6]	[2]	[7]	[8]	[4]			
[1]	[3]	[5]	[6]	[2]	[7]	[8]	[4]			
[1]	[3]	[5]	[6]	[2]	[7]	[8]	[4]			
[1]	[3]	[5]	[6]	[2]	[7]	[8]	[4]			
[1]	[3]	[5]	[6]	[2]	[7]	[4]	[8]			

[3]	[1]	[5]	[6]	[7]	[2]	[8]	[4]			
first round:										
[3]	[1]	[5]	[6]	[7]	[2]	[8]	[4]			
[1]	[3]	[5]	[6]	[7]	[2]	[4]	[8]			
[1]	[3]	[5]	[6]	[7]	[2]	[8]	[4]			
[1]	[3]	[5]	[6]	[7]	[2]	[4]	[8]			
[1]	[3]	[5]	[6]	[7]	[2]	[8]	[4]			
[1]	[3]	[5]	[6]	[2]	[7]	[8]	[4]			
[1]	[3]	[5]	[6]	[2]	[7]	[8]	[4]			
[1]	[3]	[5]	[6]	[2]	[7]	[8]	[4]			
[1]	[3]	[5]	[6]	[2]	[7]	[8]	[4]			
[1]	[3]	[5]	[6]	[2]	[7]	[4]	[8]			

Statement (Observation)

do 7 times comparison and put the largest number to the end!

[1] [3] [5] [6] [2] [7] [4] [8] second round: [1] [3] [5] [6] [7] [2] [4] [8]

[1] [3] [5] [6] [2] [7] [4] [8] second round: [1] [3] [5] [6] [7] [2] [4] [8] [1] [3] [5] [6] [7] [2] [4] [8]

[1] [3] [5] [6] [2] [7] [4] [8] second round: [1] [3] [5] [6] [7] [2] [4] [8] [1] [3] [5] [6] [7] [2] [4] [8]

...

[1] [3] [5] [6] [2] [7] [4] [8] second round: [1] [3] [5] [6] [7] [2] [4] [8] [1] [3] [5] [6] [7] [2] [4] [8] ...

[1] [3] [5] [6] [7] [2] [4] [8]

[1] [3] [5] [6] [2] [7] [4] [8] second round: [1] [3] [5] [6] [7] [2] [4] [8] [1] [3] [5] [6] [7] [2] [4] [8] . . . [1] [3] [5] [6] [7] [2] [4] [8] [1] [3] [5] [6] [2] [7] [4] [8]

[1] [3] [5] [6] [2] [7] [4] [8] second round: [3] [5] [6] [7] [2] [4] **[1]** [8] [1] [3] [5] [6] [7] [2] [4] [8] . . . [1] [3] [5] [6] [7] [2] [4] [8] [1] [3] [5] [6] [2] [8] [7] Γ41 [1] [3] [5] [6] [2] [7] [4] [8]

[1] [3] [5] [6] [2] [7] [4] [8] second round: [5] [6] [7] [2] **[1]** [3] [4] [8] [1] [3] [5] [6] [7] [2] [4] [8] . . . [1] [3] [5] [6] [7] [2] [4] [8] [1] [3] [5] [6] [2] [8] [7] Γ41 [3] [5] [6] **Г1**] [2] [7] [4] [8] [1] [3] [5] [6] [2] Γ41 [7] [8]

[1] [3] [5] [6] [2] [7] [4] [8] second round: [6] [7] [2] [3] [5] Γ41 [8] [1] [3] [5] [6] [7] [2] [4] [8] Γ17 [3] [5] [6] [2] Γ41 [8] [3] [1] [5] [6] [2] [7] Γ41 [8] **Г1**] [3] [5] [6] [2] [7] [8] [4] [1] [3] [6] [2] [4] [5] [7] [8]

Statement (Observation)

For these 7 numbers: do 6 times comparison and put the **largest** number to the end! ⇒ The last two numbers are sorted!

[1] [3] [5] [6] [2] [4] [7] [8] third round: [1] [3] [5] [6] [2] [4] [7] [8]

[1] [3] [5] [6] [2] [4] [7] [8] third round: [1] [3] [5] [6] [2] [4] [7] [8] [1] [3] [5] [6] [2] [4] [7] [8]

[1] [3] [5] [6] [2] [4] [7] [8] third round: [1] [3] [5] [6] [2] [4] [7] [8] [1] [3] [5] [6] [2] [4] [7] [8]

. . .

[1] [3] [5] [6] [2] [4] [7] [8] third round: [1] [3] [5] [6] [2] [4] [7] [8] [1] [3] [5] [6] [2] [4] [7] [8] ... [1] [3] [5] [6] [2] [4] [7] [8]

[1] [3] [5] [6] [2] [4] [7] [8] third round: [5] [6] [2] **[1]** [3] [4] [7] [8] [1] [6] [2] [3] [5] [4] [7] [8] ... [1] [3] [5] [6] [2] [4] [7] [8] [1] [3] [5] [2] [6] [4] [7] [8]

[1] [3] [5] [6] [2] [4] [7] [8] third round: [6] [2] **[1]** [3] [5] [4] [7] [8] [1] [3] [5] [6] [2] [4] [7] [8] ... [1] [3] [5] [4] [8] [6] [2] [7] [1] [3] [5] [2] [6] [4] [7] [8] [1] [3] [5] [2] [6] [4] [7] [8]

[1]	[3]	[5]	[6]	[2]	[4]	[7]	[8]
		t	hird ı	round	l:		
[1]	[3]	[5]	[6]	[2]	[4]	[7]	[8]
[1]	[3]	[5]	[6]	[2]	[4]	[7]	[8]
[1]	[3]	[5]	[6]	[2]	[4]	[7]	[8]
[1]	[3]	[5]	[2]	[6]	[4]	[7]	[8]
[1]	[3]	[5]	[2]	[6]	[4]	[7]	[8]
[1]	[3]	[5]	[2]	[4]	[6]	[7]	[8]

[1]	[3]	[5]	[6]	[2]	[4]	[7]	[8]
		t	hird ı	round	l:		
[1]	[3]	[5]	[6]	[2]	[4]	[7]	[8]
[1]	[3]	[5]	[6]	[2]	[4]	[7]	[8]
[1]	[3]	[5]	[6]	[2]	[4]	[7]	[8]
[1]	[3]	[5]	[2]	[6]	[4]	[7]	[8]
[1]	[3]	[5]	[2]	[6]	[4]	[7]	[8]
[1]	[3]	[5]	[2]	[4]	[6]	[7]	[8]
[1]	[3]	[5]	[2]	[4]	[6]	[7]	[8]

[3] [5] [6] [2] [4] [7] [8] Γ1] third round: [3] [5] [6] [2] Γ41 [8] **Г1** [7] [1] [3] [5] [6] [2] [4] [8] [7] . . . [5] Γ17 [3] [6] [2] [4] [7] [8] Γ1٦ [3] [5] [2] [6] [4] [8] [7] Γ1] [3] [5] [2] [6] ٢4٦ [7] [8] [3] [5] Γ17 [2] Γ41 [6] [7] [8] [1] [3] [5] [2] [4] [6] [8] [7]

Statement (Observation)

For these 6 numbers: do 5 times comparison and put the **largest** number to the end! ⇒ The last 3 numbers are sorted!

[1] [3] [5] [2] [4] [6] [7] [8] 4th round: [1] [3] [5] [2] [4] [6] [7] [8]

[1] [3] [5] [2] [4] [6] [7] [8] 4th round: [1] [3] [5] [2] [4] [6] [7] [8] [1] [3] [5] [2] [4] [6] [7] [8]

[1] [3] [5] [2] [4] [6] [7] [8] 4th round: [1] [3] [5] [2] [4] [6] [7] [8] [1] [3] [5] [2] [4] [6] [7] [8]

. . .

[1] [3] [5] [2] [4] [6] [7] [8] 4th round: [1] [3] [5] [2] [4] [6] [7] [8] [1] [3] [5] [2] [4] [6] [7] [8] ... [1] [3] [5] [2] [4] [6] [7] [8]

[1] [3] [5] [2] [4] [6] [7] [8] 4th round: [5] [2] [4] **[1]** [3] [6] [7] [8] [1] [2] [4] [3] [5] [6] [7] [8] ... [1] [3] [5] [2] [6] Γ41 [7] [8] [1] [3] [2] [5] [4] [6] [7] [8]

[1] [3] [5] [2] [4] [6] [7] [8] 4th round: [5] [2] [4] **[1]** [3] [6] [7] [8] [1] [3] [5] [2] [4] [6] [7] [8] ... [1] [3] [5] [6] [8] [2] ۲4T [7] [1] [3] [2] [5] [4] [6] [7] [8] [1] [3] [2] [5] [4] [6] [7] [8]

[1]	[3]	[5]	[2]	[4]	[6]	[7]	[8]
			4th r	ound:			
[1]	[3]	[5]	[2]	[4]	[6]	[7]	[8]
[1]	[3]	[5]	[2]	[4]	[6]	[7]	[8]
[1]	[3]	[5]	[2]	[4]	[6]	[7]	[8]
[1]	[3]	[2]	[5]	[4]	[6]	[7]	[8]
[1]	[3]	[2]	[5]	[4]	[6]	[7]	[8]
[1]	[3]	[2]	[4]	[5]	[6]	[7]	[8]

[1]	[3]	[5]	[2]	[4]	[6]	[7]	[8]
			4th r	ound:			
[1]	[3]	[5]	[2]	[4]	[6]	[7]	[8]
[1]	[3]	[5]	[2]	[4]	[6]	[7]	[8]
[1]	[3]	[5]	[2]	[4]	[6]	[7]	[8]
[1]	[3]	[2]	[5]	[4]	[6]	[7]	[8]
[1]	[3]	[2]	[5]	[4]	[6]	[7]	[8]
[1]	[3]	[2]	[4]	[5]	[6]	[7]	[8]
[1]	[3]	[2]	[4]	[5]	[6]	[7]	[8]

[3] [5] [2] [4] [6] [7] [8] Γ1**]** 4th round: [2] [4] [3] [5] [6] [8] **Г1** [7] [1] [3] [5] [2] [4] [6] [8] [7] Γ17 [3] [5] [2] [4] [6] [7] [8] Γ1٦ [3] [2] [5] [4] [6] [8] [7] Γ1] [3] [2] [6] [5] ٢4٦ [7] [8] [3] [2] Γ17 [4] [5] [6] [7] [8] [1] [3] [2] [4] [5] [6] [8] [7]

Statement (Observation)

For these 5 numbers: do 4 times comparison and put the **largest** number to the end! ⇒ The last 4 numbers are sorted!

[1] [3] [2] [4] [5] [6] [7] [8] 5th round: [1] [3] [2] [4] [5] [6] [7] [8]

[1] [3] [2] [4] [5] [6] [7] [8] 5th round: [1] [3] [2] [4] [5] [6] [7] [8] [1] [3] [2] [4] [5] [6] [7] [8]

[1] [3] [2] [4] [5] [6] [7] [8] 5th round: [1] [3] [2] [4] [5] [6] [7] [8] [1] [3] [2] [4] [5] [6] [7] [8] [1] [3] [2] [4] [5] [6] [7] [8]

[1]	[3]	[2]	[4]	[5]	[6]	[7]	[8]	
5th round:								
[1]	[3]	[2]	[4]	[5]	[6]	[7]	[8]	
[1]	[3]	[2]	[4]	[5]	[6]	[7]	[8]	
[1]	[3]	[2]	[4]	[5]	[6]	[7]	[8]	
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	

[1]	[3]	[2]	[4]	[5]	[6]	[7]	[8]	
5th round:								
[1]	[3]	[2]	[4]	[5]	[6]	[7]	[8]	
[1]	[3]	[2]	[4]	[5]	[6]	[7]	[8]	
[1]	[3]	[2]	[4]	[5]	[6]	[7]	[8]	
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	

[1]	[3]	[2]	[4]	[5]	[6]	[7]	[8]
			5th r	ound			
[1]	[3]	[2]	[4]	[5]	[6]	[7]	[8]
[1]	[3]	[2]	[4]	[5]	[6]	[7]	[8]
[1]	[3]	[2]	[4]	[5]	[6]	[7]	[8]
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]

[1]	[3]	[2]	[4]	[5]	[6]	[7]	[8]
			5th r	ound			
[1]	[3]	[2]	[4]	[5]	[6]	[7]	[8]
[1]	[3]	[2]	[4]	[5]	[6]	[7]	[8]
[1]	[3]	[2]	[4]	[5]	[6]	[7]	[8]
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]

Statement (Observation)

For these 4 numbers: do 3 times comparison and put the **largest** number to the end! ⇒ The last 5 numbers are sorted!

[1] [2] [3] [4] [5] [6] [7] [8] 6th round: [1] [2] [3] [4] [5] [6] [7] [8]

[1] [2] [3] [4] [5] [6] [7] [8] 6th round: [1] [2] [3] [4] [5] [6] [7] [8]

Statement (Observation)

For these 3 numbers: do 2 times comparison and put the **largest** number to the end! ⇒ The last 6 numbers are sorted!

[1] [2] [3] [4] [5] [6] [7] [8] 6th round: [1] [2] [3] [4] [5] [6] [7] [8]

Statement (Observation)

For these 3 numbers: do 2 times comparison and put the **largest** number to the end! ⇒ The last 6 numbers are sorted!

> 7th round: [1] [2] [3] [4] [5] [6] [7] [8]

[1] [2] [3] [4] [5] [6] [7] [8] 6th round: [1] [2] [3] [4] [5] [6] [7] [8]

Statement (Observation)

For these 3 numbers: do 2 times comparison and put the largest number to the end! \Rightarrow The last 6 numbers are sorted!

7th round: [1] [2] [3] [4] [5] [6] [7] [8]

Statement (Observation)

For these 2 numbers: do 1 times comparison and finish!

Bubble-sort (Pseudocode)

Algorithm 1: Bubble-sort

```
Input: An array A[1, 2, \ldots, n]
  Output: An sorted array A[1, 2, \ldots, n]
1 for i = 1, ..., n - 1 do
    for i = 1, ..., n - i do
2
         if A[j] > A[j+1] then
3
    X \leftarrow A[j];
4
    A[j] \leftarrow A[j+1];A[j+1] \leftarrow X;
5
6
         end
7
8
     end
9 end
```

- ▶ a) after one pass through the array, the largest entry will be at the end.
- **b**) if there is no pair of consecutive entries out of order, then the entire array is sorted.

- ▶ a) after one pass through the array, the largest entry will be at the end.
- **b**) if there is no pair of consecutive entries out of order, then the entire array is sorted.

Statement

a) after one pass through the array, the largest entry will be at the end.

- ▶ a) after one pass through the array, the largest entry will be at the end.
- **b**) if there is no pair of consecutive entries out of order, then the entire array is sorted.

Statement

a) after one pass through the array, the largest entry will be at the end.

Proof for a) by induction.

1) After 1st comparison, $X := \max\{A[1], A[2]\}, A[2] \leftarrow X$.

- ▶ a) after one pass through the array, the largest entry will be at the end.
- **b**) if there is no pair of consecutive entries out of order, then the entire array is sorted.

Statement

a) after one pass through the array, the largest entry will be at the end.

Proof for a) by induction.

1) After 1st comparison, $X := \max\{A[1], A[2]\}, A[2] \leftarrow X$. 2) After 2st comparison (and swap), A[3] is the largest one among A[1], A[2], A[3].

- ▶ a) after one pass through the array, the largest entry will be at the end.
- **b**) if there is no pair of consecutive entries out of order, then the entire array is sorted.

Statement

a) after one pass through the array, the largest entry will be at the end.

Proof for a) by induction.

- 1) After 1st comparison, $X := \max\{A[1], A[2]\}, A[2] \leftarrow X$.
- 2) After 2st comparison (and swap), A[3] is the largest one among A[1], A[2], A[3].

3) Assume A[k] is the largest one among $\{A[i]\}_{i=1}^{k}$, then in the next comparison between A[k] and A[k+1], (and swap), A[k+1] is the largest one among $\{A[i]\}_{i=1}^{k+1}$. We finish the proof. \Box

Proof for bubble-sort

Statement

b) if there is no pair of consecutive entries out of order, then the entire array is sorted.

Proof for bubble-sort

Statement

b) if there is no pair of consecutive entries out of order, then the entire array is sorted.

Proof.

1) after the i-th iteration in the outer loop, according to a), we know that

$$A[n], A[n-1], \cdots, A[n-i+1]$$
 are sorted.

Proof for bubble-sort

Statement

b) if there is no pair of consecutive entries out of order, then the entire array is sorted.

Proof.

1) after the i-th iteration in the outer loop, according to a), we know that

$$A[n], A[n-1], \cdots, A[n-i+1]$$
 are sorted.

2) according to the condition, after the i-th iteration, no swap for A[j] with $j=1,2,\cdots,n-i,$ i.e.,

$$A[1], A[2], \dots, A[n-i], A[n-i+1]$$
 are sorted.

Accordingly, we finish the proof.

Remark: Our example finished after the 6th round.

Running time analysis for Bubble-sort

Algorithm 2: Bubble-sort

Input: An array $A[1, 2, \ldots, n]$ **Output:** An sorted array $A[1, 2, \ldots, n]$ 1 for i = 1, ..., n - 1 do for j = 1, ..., n - i do 2 if A[j] > A[j+1] then 3 $X \leftarrow A[j];$ 4 $A[j] \leftarrow A[j+1];$ $A[j+1] \leftarrow X;$ 5 6 7 end 8 end 9 end

Runtime analysis results

Runtime analysis: How many comparisons are done.

$$\Rightarrow \text{Total runtime} = \sum_{i=1}^{n-1} \Theta(n-i) = \Theta(n^2) \,.$$

Theorem

Bubble-sort algorithm correctly sorts the input array and runs in $\Theta(n^2)$ time.

*More information

- \blacktriangleright the best case time complexity: $\Theta(n)$ if the array is already sorted
- ▶ the average case¹ time complexity: Θ(n²)
 all possible n! inputs
- space complexity: $\Theta(1)$

¹check https://cs.stackexchange.com/questions/20/ evaluating-the-average-time-complexity-of-a-given-bubblesort-algorithm if you're interested in.