Discrete Mathematics and Its Application 2 (CS147)

Lecture 3: Worst-case asymptotic running time

Fanghui Liu

Department of Computer Science, University of Warwick, UK

Analyzing the runtime of an algorithm for a computational problem using Big-O notation.

Analyzing the runtime of an algorithm for a computational problem using Big-O notation.

Q1: What is a computational problem?

Analyzing the runtime of an algorithm for a computational problem using Big-O notation.

- Q1: What is a computational problem?
- Q2: What is an algorithm?

Analyzing the runtime of an algorithm for a computational problem using Big-O notation.

- ▶ Q1: What is a computational problem?
- Q2: What is an algorithm?
- Q3: How to define an algorithm's runtime?

Computational problem (decision problem)

Example

 $\begin{array}{l} \textbf{Input} \text{ - An array } A[1,2,\ldots,n] \text{ of } n \text{ numbers.} \\ \Leftrightarrow A[1],A[2],A[3],\cdots,A[n] \\ \text{For each } i \in \{1,2,\cdots,n\}, \ A[i] \text{ is a real number.} \end{array}$

Computational problem (decision problem)

Example

Input - An array $A[1,2,\ldots,n]$ of n numbers. Output

▶ Yes if there exist indices $i, j \in \{1, 2, \dots, n\}$ with $i \neq j$ such that A[i] + A[j] = 0.

No otherwise.

Computational problem P (say) $_{\circ}$ the class of decision problems that are solvable in polynomial time

Computational problem (decision problem)

In the previous example, for all inputs I, either solutions(I)=Yes or Solutions(I) = No. A computational problem P consists of:

decision problem: the answer for every input is either yes or no
 search problem, counting problem, optimization problem...

Algorithm

Definition

An algorithm for a computational problem P is a step by step procedure such that given any input I, outputs a valid solution for I.

Algorithm

Definition

An algorithm for a computational problem ${\tt P}$ is a step by step procedure such that given any input I, outputs a valid solution for I.

- ► Input: I
- Output: A valid solution for I

An algorithm for our example problem

An example algorithm (Pseudocode) For i = 1, 2, ..., nFor j = i + 1, i + 2, ..., nIf A[i] + A[j] = 0Return YES. Return No.

You can implement this algorithm by writing a computer program in C, C++, Java etc.

An algorithm for our example problem

An example algorithm (Pseudocode) For i = 1, 2, ..., nFor j = i + 1, i + 2, ..., nIf A[i] + A[j] = 0Return YES. Return No.

You can implement this algorithm by writing a computer program in C, C++, Java etc.

```
c/c++
//Using for-loops to add numbers 1 - 5
int sum = 0;
for (int i = 1; i <= 5; ++i) {
    sum += i;
  }
Python
for i in range(1, 6): # gives i values from 1 to 5 inclusive (but not 6)
  # statements
  print(i)
# if wiwent 6 we must do the following
for i in range(1, 6 + 1): # gives i values from 1 to 6
  # statement(i)
</pre>
```

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk

Algorithms vs. Programs

- ▶ The same algorithm can be implemented in different programming languages.
- An algorithm is an abstract mathematical object, independent of

 the programming language it has been implemented in
 the machine (computer) it is running on.

Runtime of an program and algorithm

Statement

Runtime of a computer program = the actual time (say, in microseconds) if it takes to finish execution.

It depends on

 the input
 the programming language
 the machine (computer)

• Line 1. total time $\leq c_1 n$

▶ Line 1. total time $\leq c_1 n$ ▶ Line 2. total time $\leq \sum_{i=1}^{n} c_2(n-i)$

▶ Line 1. total time
$$\leq c_1 n$$

▶ Line 2. total time $\leq \sum_{i=1}^{n} c_2(n-i)$
▶ Line 3. total time $\leq \sum_{i=1}^{n} c_3(n-i)$

▶ Line 1. total time
$$\leq c_1 n$$

▶ Line 2. total time $\leq \sum_{i=1}^{n} c_2(n-i)$
▶ Line 3. total time $\leq \sum_{i=1}^{n} c_3(n-i)$
▶ Line 4. total time $\leq \sum_{i=1}^{n} c_4(n-i)$

▶ Line 1. total time
$$\leq c_1 n$$

▶ Line 2. total time $\leq \sum_{i=1}^{n} c_2(n-i)$
▶ Line 3. total time $\leq \sum_{i=1}^{n} c_3(n-i)$
▶ Line 4. total time $\leq \sum_{i=1}^{n} c_4(n-i)$
▶ Line 5. total time $\leq c_5$

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 9/ 16

▶ Line 1. total time
$$\leq c_1 n$$

▶ Line 2. total time $\leq \sum_{i=1}^{n} c_2(n-i)$
▶ Line 3. total time $\leq \sum_{i=1}^{n} c_3(n-i)$
▶ Line 4. total time $\leq \sum_{i=1}^{n} c_4(n-i)$
▶ Line 5. total time $\leq c_5$
Total time spent on an input of size n

$$\leq c_1 n + \sum_{i=1}^n c_2(n-i) + \sum_{i=1}^n c_3(n-i) + \sum_{i=1}^n c_4(n-i) + c_5 = \Theta(n^2)$$

• On every input of size n, the algorithm spends **at most** $\Theta(n^2)$ time.

- On every input of size n, the algorithm spends **at most** $\Theta(n^2)$ time.
- ▶ Input sensitivity: There are inputs of size n on which the algorithm spends only Θ(1) time. [e.g., A[1] + A[2] = 0]

- On every input of size n, the algorithm spends **at most** $\Theta(n^2)$ time.
- ► Input sensitivity: There are inputs of size n on which the algorithm spends only Θ(1) time. [e.g., A[1] + A[2] = 0]
- ▶ Input sensitivity: There are inputs of size n on which the algorithm spends $\Theta(n^2)$ time. [e.g., A[1] = 1, A[2] = 2, ..., A[n-1] = n-1 and A[n] = -(n-1)]

- On every input of size n, the algorithm spends **at most** $\Theta(n^2)$ time.
- ► Input sensitivity: There are inputs of size n on which the algorithm spends only Θ(1) time. [e.g., A[1] + A[2] = 0]
- ▶ Input sensitivity: There are inputs of size n on which the algorithm spends $\Theta(n^2)$ time. [e.g., A[1] = 1, A[2] = 2, ..., A[n-1] = n-1 and A[n] = -(n-1)]

We will say that the algorithm has a runtime of $\Theta(n^2)$.

Runtime of an algorithm

Formally, let

$$f(n) = \max_{\substack{\text{input } I \text{ of size } n}} (\text{runtime of the algorithm on input } I)$$

We will focus on how f(n) grows with input size n, asymptotically. \Leftrightarrow Worst-case asymptotic running time of an algorithm.

▶ Is a feature of an algorithm for a given computational problem

- ▶ Is a feature of an algorithm for a given computational problem
- Independent of
 - \circ programming language
 - \circ specific input
 - machine (computer)

- ▶ Is a feature of an algorithm for a given computational problem
- Independent of
 - programming language
 - \circ specific input
 - machine (computer)
- Allows us to compare two different algorithms for the same problem.

- \blacktriangleright An $\mathcal{O}(n^2)$ time algorithm is better than an $\mathcal{O}(n^3)$ time algorithm
- \blacktriangleright An $\mathcal{O}(n\log n)$ time algorithm is better than an $\mathcal{O}(n^2)$ time algorithm

Goal

Given a computational problem, our goal will be to find an algorithm for it with smallest possible worst-case asymptotic runtime.

Runtime of an algorithm

Statement

- constant time $\mathcal{O}(1)$: arithmetic/logic operation, access one element in an array
- linear time $\mathcal{O}(n)$: merge two sorted arrays (Lecture 5)
- quadratic time $\mathcal{O}(n^2)$: bubble sort (Lecture 4)
- ▶ logarithmic time $O(\log n)$: binary search (Lecture 6)
- ▶ linearithmic time $O(n \log n)$: merge sort (Lecture 5)

Beyond the worst case runtime analysis

- ▶ the best case: find one input that the algorithm can perform the best
- ▶ the average case: averaged over all possible inputs for randomized algorithm
- runtime analysis vs. memory analysis

*Examples in TCS, ML theory

Theorem 6 (arbitrary loss). From random initialization, with probability at least $1 - e^{-\Omega(\log^2 m)}$, gradient descent with appropriate learning rate satisfy the following.

• If f is nonconvex but σ -gradient dominant (a.k.a. Polyak-Lojasiewicz), GD finds ε -error minimizer in¹⁴ $T = \widetilde{O}(\frac{\operatorname{poly}(n,L)}{cr} \cdot \log \frac{1}{c}) \operatorname{iterations}$

as long as $m \ge \widetilde{\Omega}(\operatorname{poly}(n, L, \delta^{-1}) \cdot d\sigma^{-2}).$

• If f is convex, then GD finds ε -error minimizer in

$$T = \widetilde{O}\left(\frac{\operatorname{poly}(n,L)}{\delta^2} \cdot \frac{1}{\varepsilon}\right) \ iteration.$$

as long as $m \ge \widetilde{\Omega} (\operatorname{poly}(n, L, \delta^{-1}) \cdot d \log \varepsilon^{-1}).$

Figure: time complexity and parameter complexity [AZLS19].

Corollary 1.3. Let \mathcal{D} be the distribution over pairs $(x, y) \in \mathbb{R}^d \times \mathbb{R}$ where $x \sim \mathcal{N}(0, \mathrm{Id})$ and y = F(x) for a size-S ReLU network F for which the product of the spectral norms of its weight matrices is a constant.

Then there is an algorithm that draws $N = d \log(1/\delta) \exp(O(k^3/\varepsilon^2 + kS))$ samples, runs in time $\widetilde{O}(d^2 \log(1/\delta)) \exp(O(k^3S^2/\varepsilon^2 + kS^3))$, and outputs a ReLU network \widetilde{F} such that $\mathbb{E}[(y - \widetilde{F}(x))^2] \leq \varepsilon$ with probability at least $1 - \delta$.

Figure: Recall the example in Lecture 1: sample complexity and time complexity [CKM22].

References |

- Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song, A convergence theory for deep learning via over-parameterization, International Conference on Machine Learning, PMLR, 2019, pp. 242–252. (Cited on page 33.)
- Sitan Chen, Adam R Klivans, and Raghu Meka, *Learning deep relu networks is fixed-parameter tractable*, 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), IEEE, 2022, pp. 696–707.
 (Cited on page 33.)