Discrete Mathematics and Its Application 2
(CS147)

Lecture 3: Worst-case asymptotic running time

Fanghui Liu

Department of Computer Science, University of Warwick, UK

Disaring .
WARWICK [ ) COMPUTER SCIENCE l:m

THE UNIVERSITY OF WARWICK



Target

Analyzing the runtime of an algorithm for a computational problem using Big-O notation.

whd..  CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 2/ 16



Target

Analyzing the runtime of an algorithm for a computational problem using Big-O notation.

> Q1: What is a computational problem?

. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 2/ 16



Target

Analyzing the runtime of an algorithm for a computational problem using Big-O notation.

> Q1: What is a computational problem?
» Q2: What is an algorithm?

A CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 2/ 16



Target

Analyzing the runtime of an algorithm for a computational problem using Big-O notation.

> Q1: What is a computational problem?
» Q2: What is an algorithm?

> Q3: How to define an algorithm’s runtime?

A CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 2/ 16



vy

Computational problem (decision problem)

Example

Input - An array A[l 2,...,n] of n numbers.
& A[l], A2], A[3],- -, Aln]
For each i € {1,2,- ,n}, Ali] is a real number.

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 3/ 16



Computational problem (decision problem)

Example

Input - An array A[1,2,...,n] of n numbers.
Output
> Yes if there exist indices 4,5 € {1,2,--- ,n} with i # j such that A[i| + A[j] = 0.

» No otherwise.

Computational problem P (say)
o the class of decision problems that are solvable in polynomial time

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 3/ 16



Computational problem (decision problem)

In the previous example, for all inputs I, either solutions(l)=Yes or Solutions(l) = No. A
computational problem P consists of:

50\\/\'\'; s (I)
ST whd

lY\\>v»+S so\w'\“fwﬁ .

| «n?u\j— I

» decision problem: the answer for every input is either yes or no
» search problem, counting problem, optimization problem...

vy

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 4/ 16



Algorithm

Definition
An algorithm for a computational problem P is a step by step procedure such that given any
input I, outputs a valid solution for I.

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 5/ 16



Algorithm

Definition
An algorithm for a computational problem P is a step by step procedure such that given any
input I, outputs a valid solution for I.

Input Output
—p> Algorithm —p>

> Input: [
» Qutput: A valid solution for I

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 5/ 16



An algorithm for our example problem

An example algorithm (Pseudocode)

Fori=1,2,...,n
Forj=i+1,i4+2,...,n
If A[i] + A[j]=0
Return YES.
Return No.

You can implement this algorithm by writing a computer program in C, C++, Java etc.

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 6/ 16



An algorithm for our example problem

An example algorithm (Pseudocode)

Fori=1,2,...,n
Forj=i+1,i+2,...,n
If A[i] + A[j]=0
Return YES.
Return No.

You can implement this algorithm by writing a computer program in C, C++, Java etc.

clc++
//Using for-loops to
int sum = 0;

add numbers 1 - 5

for (int i = 1; i <= 5; ++i) {
sum += i;
}
Python
from 1 to 5 inclusive (but not 6)

for i in range(1, 6): # gives i values

# statements
print(i)

# if we want 6 we must do the following

for i in range(1, 6 + 1): # gives i values from 1 to 6
# statements
print(i)

A CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 6/ 16



Algorithms vs. Programs

» The same algorithm can be implemented in different programming languages.

» An algorithm is an abstract mathematical object, independent of
o the programming language it has been implemented in
o the machine (computer) it is running on.

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 7/ 16



Runtime of an program and algorithm

Statement
Runtime of a computer program = the actual time (say, in microseconds) if it takes to finish
execution.

> It depends on
o the input
o the programming language
o the machine (computer)

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 8/ 16



Example: Runtime of an algorithm

An example algorithm (Pseudocode)

(take ¢q time) 1. Fori=1,2,...,n
(take co time)

(take cg time) 3. If Afi] + A[j] =
(take ¢4 time) 4. Return YES.
( ) 5. Return No.

take c5 time

2. Forj=i+1,i+2,...,n

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 9/ 16



Example: Runtime of an algorithm

An example algorithm (Pseudocode)

(take ¢q time) 1. Fori=1,2,...,n
(take co time)

(take cg time) 3. If Afi] + A[j] =
(take ¢4 time) 4. Return YES.
( ) 5. Return No.

take c5 time

2. Forj=i+1,i+2,...,n

> Line 1. total time < ¢1n

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 9/ 16



Example: Runtime of an algorithm

An example algorithm (Pseudocode)

(take ¢q time) 1. Fori=1,2,...,n

(take co time) 2 Forj=i+1,i+2,...,n
(take cg time) 3. If Afi]+ A[j]=0
(take ¢4 time) 4 Return YES.

(take ¢5 time) 5. Return No.

> Line 1. total time < ¢1n
> Line 2. total time < >°" | co(n — i)

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 9/ 16



Example: Runtime of an algorithm

An example algorithm (Pseudocode)

take ¢; time) 1. For: =1,2,...,n

(

(take co time) 2. Forj=i+1,i+2,...,n
(take c3 time) 3. If A[i] + A[j]=0
(take ¢4 time) 4. Return YES.

(take c¢5 time) 5. Return No.

> Line 1. total time < ¢1n
> Line 2. total time < >°" | co(n — i)
> Line 3. total time < >_"" , cs(n — i)

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 9/ 16



Example: Runtime of an algorithm

An example algorithm (Pseudocode)

(take ¢q time) 1. Fori=1,2,...,n

(take co time) 2 Forj=i+1,i+2,...,n
(take cg time) 3. If Afi]+ A[j]=0
(take ¢4 time) 4 Return YES.

(take ¢5 time) 5. Return No.

Line 1. total time < ¢in

Line 2. total time < Y7 | co(n — i)
Line 3. total time < 3" | c3(n — 1)
Line 4. total time < 3" | ca(n — 1)

vvyyy

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 9/ 16



Example: Runtime of an algorithm

An example algorithm (Pseudocode)

(take ¢q time) 1. Fori=1,2,...,n

(take co time) 2 Forj=i+1,i+2,...,n
(take cg time) 3. If Afi]+ A[j]=0
(take ¢4 time) 4 Return YES.

(take ¢5 time) 5. Return No.

Line 1. total time < ¢in

Line 2. total time < Y7 | co(n — i)
Line 3. total time < 3" | c3(n — 1)
Line 4. total time < 3" | ca(n — 1)
Line 5. total time < ¢5

vyvyyvyvyy

Y.,  CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 9/ 16



Example: Runtime of an algorithm

An example algorithm (Pseudocode)

(take ¢q time) 1. Fori=1,2,...,n

(take co time) 2 Forj=i+1,i+2,...,n
(take cg time) 3. If Afi]+ A[j]=0
(take ¢4 time) 4 Return YES.

(take ¢5 time) 5. Return No.

> Line 1. total time < ¢1n

> Line 2. total time < >°" | co(n — i)
> Line 3. total time < >_"" , cs(n — i)
> Line 4. total time < " | ca(n — i)
>

Line 5. total time < ¢5
Total time spent on an input of size n

n n

<cn+ ZCQ(” —1) + 203(71 —1) + 204(11 — i) +c5 = O(n?)

i=1 i=1 i=1

Y.,  CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 9/ 16



> On every input of size n, the algorithm spends at most ©(n?) time.

Y.,  CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 16



> On every input of size n, the algorithm spends at most ©(n?) time.

> Input sensitivity: There are inputs of size n on which the algorithm spends only ©(1)
time. [e.g., A[1] + A[2] = 0]

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 16



> On every input of size n, the algorithm spends at most ©(n?) time.

> Input sensitivity: There are inputs of size n on which the algorithm spends only ©(1)
time. [e.g., A[1] + A[2] = 0]

> Input sensitivity: There are inputs of size n on which the algorithm spends ©(n?) time.
leg, A1l =1,42] =2,...,Aln— 1] =n—1and A[n] = —(n — 1)]

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 16



> On every input of size n, the algorithm spends at most ©(n?) time.

> Input sensitivity: There are inputs of size n on which the algorithm spends only ©(1)
time. [e.g., A[1] + A[2] = 0]
> Input sensitivity: There are inputs of size n on which the algorithm spends ©(n?) time.
leg, A1l =1,42] =2,...,Aln— 1] =n—1and A[n] = —(n — 1)]
We will say that the algorithm has a runtime of ©(n?).

A CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 16



Runtime of an algorithm

Formally, let

f(n)= max (runtime of the algorithm on input I)
input I of size n

We will focus on how f(n) grows with input size n, asymptotically.
< Worst-case asymptotic running time of an algorithm.

A CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 11/ 16



Worst-case asymptotic running time

> |s a feature of an algorithm for a given computational problem

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 12/ 16



Worst-case asymptotic running time

> |s a feature of an algorithm for a given computational problem
» Independent of

o programming language

o specific input

o machine (computer)

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 12/ 16



Worst-case asymptotic running time

> |s a feature of an algorithm for a given computational problem
» Independent of
o programming language
o specific input
o machine (computer)
> Allows us to compare two different algorithms for the same problem.

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 12/ 16



vy

Worst-case asymptotic running time

> An O(n?) time algorithm is better than an O(n?) time algorithm
> An O(nlogn) time algorithm is better than an O(n?) time algorithm

Goal

Given a computational problem, our goal will be to find an algorithm for it with smallest
possible worst-case asymptotic runtime.

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 13/ 16



Runtime of an algorithm

Statement

> constant time O(1): arithmetic/logic operation, access one element in an array
> linear time O(n): merge two sorted arrays (Lecture 5)

> quadratic time O(n?): bubble sort (Lecture 4)

> logarithmic time O(logn): binary search (Lecture 6)

>

linearithmic time O(nlogn): merge sort (Lecture 5)

A CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 14/ 16



Beyond the worst case runtime analysis

> the best case: find one input that the algorithm can perform the best
> the average case: averaged over all possible inputs for randomized algorithm

> runtime analysis vs. memory analysis

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 15/ 16



*Examples in TCS, ML theory

Theorem 6 (arbitrary loss). From random initialization, with probability at least 1 — e~ log? ),
gradient descent with appropriate learning rate satisfy the following.
e If f is nonconvex but o-gradient dominant (a.k.a. Polyak-Lojasiewicz), GD finds e-error

minimizer in'4

I T= 6(%"2’—1‘) -log %) iterations l
as long a‘{m > ﬁ(poly(n, L,67Y -do’2)4]
o If f is convex, then GD finds e-error minimizer in

T= 5(%&”—” - 1) dterations

as long as m > Q(poly(n, L,67") - dloge™").

Figure: time complexity and parameter complexity [AZLS19].

Corollary 1.3. Let D be the distribution over pairs (z,y) € R? x R where z ~ N(0,1d) and
y = F() for a size-S ReLU network F for which the product of the spectral norms of its weight
matrices is a constant.

__ Then there is an algorithm that draws N = dlog(1/6) exp(O(k®/e?+kS)) samples, runs in time
O(d?log(1/6)) exp(O(k*S?/e2 +kS®)), and outputs a ReLU network F such that E[(y— F(z))?] < ¢
with probability at least 1 — 6.

Figure: Recall the example in Lecture 1: sample complexity and time complexity [CKM22].

A CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 16/ 16



References |

[0] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song, A convergence theory for deep learning via
over-parameterization, International Conference on Machine Learning, PMLR, 2019,
pp. 242-252.
(Cited on page 33.)

[0] Sitan Chen, Adam R Klivans, and Raghu Meka, Learning deep relu networks is
fixed-parameter tractable, 2021 |IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), IEEE, 2022, pp. 696-707.

(Cited on page 33.)

vl CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 1/ 1



	Appendix

