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Target
Analyzing the runtime of an algorithm for a computational problem using Big-O notation.

▶ Q1: What is a computational problem?
▶ Q2: What is an algorithm?
▶ Q3: How to define an algorithm’s runtime?
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Computational problem (decision problem)

Example
Input - An array A[1, 2, . . . , n] of n numbers.
⇔ A[1], A[2], A[3], · · · , A[n]
For each i ∈ {1, 2, · · · , n}, A[i] is a real number.

Computational problem P (say)
◦ the class of decision problems that are solvable in polynomial time
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Computational problem (decision problem)

Example
Input - An array A[1, 2, . . . , n] of n numbers.
Output
▶ Yes if there exist indices i, j ∈ {1, 2, · · · , n} with i , j such that A[i] + A[j] = 0.
▶ No otherwise.

Computational problem P (say)
◦ the class of decision problems that are solvable in polynomial time

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 3/ 16



Computational problem (decision problem)
In the previous example, for all inputs I, either solutions(I)=Yes or Solutions(I) = No. A
computational problem P consists of:

▶ decision problem: the answer for every input is either yes or no
▶ search problem, counting problem, optimization problem...
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Algorithm

Definition
An algorithm for a computational problem P is a step by step procedure such that given any
input I, outputs a valid solution for I.

Algorithm
Input Output

▶ Input: I

▶ Output: A valid solution for I
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An algorithm for our example problem

An example algorithm (Pseudocode)
For i = 1, 2, . . . , n

For j = i + 1, i + 2, . . . , n
If A[i] + A[j] = 0

Return YES.
Return No.

You can implement this algorithm by writing a computer program in C, C++, Java etc.
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Algorithms vs. Programs

▶ The same algorithm can be implemented in different programming languages.
▶ An algorithm is an abstract mathematical object, independent of

◦ the programming language it has been implemented in
◦ the machine (computer) it is running on.
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Runtime of an program and algorithm

Statement
Runtime of a computer program = the actual time (say, in microseconds) if it takes to finish
execution.

▶ It depends on
◦ the input
◦ the programming language
◦ the machine (computer)
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Example: Runtime of an algorithm

An example algorithm (Pseudocode)
(take c1 time) 1. For i = 1, 2, . . . , n
(take c2 time) 2. For j = i + 1, i + 2, . . . , n
(take c3 time) 3. If A[i] + A[j] = 0
(take c4 time) 4. Return YES.
(take c5 time) 5. Return No.

▶ Line 1. total time ≤ c1n
▶ Line 2. total time ≤

∑n
i=1 c2(n − i)

▶ Line 3. total time ≤
∑n

i=1 c3(n − i)
▶ Line 4. total time ≤

∑n
i=1 c4(n − i)

▶ Line 5. total time ≤ c5
Total time spent on an input of size n

≤ c1n +
n∑

i=1
c2(n − i) +

n∑
i=1

c3(n − i) +
n∑

i=1
c4(n − i) + c5 = Θ(n2)
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▶ On every input of size n, the algorithm spends at most Θ(n2) time.

▶ Input sensitivity: There are inputs of size n on which the algorithm spends only Θ(1)
time. [e.g., A[1] + A[2] = 0]

▶ Input sensitivity: There are inputs of size n on which the algorithm spends Θ(n2) time.
[e.g., A[1] = 1, A[2] = 2, . . . , A[n − 1] = n − 1 and A[n] = −(n − 1)]

We will say that the algorithm has a runtime of Θ(n2).
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Runtime of an algorithm

Formally, let

f(n) = max
input I of size n

(runtime of the algorithm on input I)

We will focus on how f(n) grows with input size n, asymptotically.
⇔ Worst-case asymptotic running time of an algorithm.
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Worst-case asymptotic running time

▶ Is a feature of an algorithm for a given computational problem

▶ Independent of
◦ programming language
◦ specific input
◦ machine (computer)

▶ Allows us to compare two different algorithms for the same problem.
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Worst-case asymptotic running time

▶ An O(n2) time algorithm is better than an O(n3) time algorithm
▶ An O(n log n) time algorithm is better than an O(n2) time algorithm

Goal
Given a computational problem, our goal will be to find an algorithm for it with smallest
possible worst-case asymptotic runtime.
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Runtime of an algorithm

Statement
▶ constant time O(1): arithmetic/logic operation, access one element in an array
▶ linear time O(n): merge two sorted arrays (Lecture 5)
▶ quadratic time O(n2): bubble sort (Lecture 4)
▶ logarithmic time O(log n): binary search (Lecture 6)
▶ linearithmic time O(n log n): merge sort (Lecture 5)
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Beyond the worst case runtime analysis

▶ the best case: find one input that the algorithm can perform the best
▶ the average case: averaged over all possible inputs for randomized algorithm
▶ runtime analysis vs. memory analysis
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*Examples in TCS, ML theory

Figure: time complexity and parameter complexity [AZLS19].

Figure: Recall the example in Lecture 1: sample complexity and time complexity [CKM22].
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