Discrete Mathematics and Its Application 2 (CS147)

Lecture 3: Worst-case asymptotic running time

Fanghui Liu
Department of Computer Science, University of Warwick, UK

Target

Analyzing the runtime of an algorithm for a computational problem using Big-O notation.

Target

Analyzing the runtime of an algorithm for a computational problem using Big-O notation.

- Q1: What is a computational problem?

Target

Analyzing the runtime of an algorithm for a computational problem using Big-O notation.

- Q1: What is a computational problem?
- Q2: What is an algorithm?

Target

Analyzing the runtime of an algorithm for a computational problem using Big-O notation.

- Q1: What is a computational problem?
- Q2: What is an algorithm?
- Q3: How to define an algorithm's runtime?

Computational problem (decision problem)

Example

Input - An array $A[1,2, \ldots, n]$ of n numbers.
$\Leftrightarrow A[1], A[2], A[3], \cdots, A[n]$
For each $i \in\{1,2, \cdots, n\}, A[i]$ is a real number.

Computational problem (decision problem)

Example

Input - An array $A[1,2, \ldots, n]$ of n numbers.
Output

- Yes if there exist indices $i, j \in\{1,2, \cdots, n\}$ with $i \neq j$ such that $A[i]+A[j]=0$.
- No otherwise.

Computational problem P (say)

- the class of decision problems that are solvable in polynomial time

Computational problem (decision problem)
In the previous example, for all inputs I, either solutions $(I)=$ Yes or Solutions $(I)=$ No. A computational problem P consists of:

- decision problem: the answer for every input is either yes or no
- search problem, counting problem, optimization problem...

Algorithm

Definition

An algorithm for a computational problem P is a step by step procedure such that given any input I, outputs a valid solution for I.

Algorithm

Definition

An algorithm for a computational problem P is a step by step procedure such that given any input I, outputs a valid solution for I.

- Input: I
- Output: A valid solution for I

An algorithm for our example problem

> | An example algorithm (Pseudocode) |
| :---: |
| For $i=1,2, \ldots, n$ |
| For $j=i+1, i+2, \ldots, n$ |
| If $A[i]+A[j]=0$ |
| Return YES. |

Return No.
You can implement this algorithm by writing a computer program in C, C++, Java etc.

An algorithm for our example problem

> | An example algorithm (Pseudocode) |
| :---: |
| For $i=1,2, \ldots, n$ |
| For $j=i+1, i+2, \ldots, n$ |
| If $A[i]+A[j]=0$ |
| Return YES. |

Return No.
You can implement this algorithm by writing a computer program in C, C++, Java etc.

```
c/C++
    //Using for-loops to add numbers 1 - 5
    int sum = 0;
    for (int i = 1; i <= 5; ++i) {
        sum += i;
    }
Python
for i in range(1, 6): # gives i values from 1 to 5 inclusive (but not 6)
    # statements
    print(i)
# if we want 6 we must do the following
for i in range(1, 6 + 1): # gives i values from 1 to 6
    # statements
    print(i)
```


Algorithms vs. Programs

- The same algorithm can be implemented in different programming languages.
- An algorithm is an abstract mathematical object, independent of o the programming language it has been implemented in - the machine (computer) it is running on.

Runtime of an program and algorithm

Statement

Runtime of a computer program = the actual time (say, in microseconds) if it takes to finish execution.

- It depends on
- the input
- the programming language
- the machine (computer)

Example: Runtime of an algorithm

An example algorithm (Pseudocode)	
(take c_{1} time) 1. For $i=1,2, \ldots, n$	
(take c_{2} time) 2. \quad For $j=i+1, i+2, \ldots, n$	
(take c_{3} time) 3. \quad If $A[i]+A[j]=0$	
(take c_{4} time) 4.	Return YES.
(take c_{5} time) 5. Return No.	

Example: Runtime of an algorithm

An example algorithm (Pseudocode)	
(take c_{1} time) 1. For $i=1,2, \ldots, n$	
(take c_{2} time) 2.	For $j=i+1, i+2, \ldots, n$
(take c_{3} time) 3.	If $A[i]+A[j]=0$
(take c_{4} time) 4.	Return YES.
(take c_{5} time) 5. Return No.	

- Line 1. total time $\leq c_{1} n$

Example: Runtime of an algorithm

An example algorithm (Pseudocode)	
(take c_{1} time) 1. For $i=1,2, \ldots, n$	
(take c_{2} time) 2.	For $j=i+1, i+2, \ldots, n$
(take c_{3} time) 3.	If $A[i]+A[j]=0$
(take c_{4} time) 4.	Return YES.
(take c_{5} time) 5. Return No.	

- Line 1. total time $\leq c_{1} n$
- Line 2. total time $\leq \sum_{i=1}^{n} c_{2}(n-i)$

Example: Runtime of an algorithm

An example algorithm (Pseudocode)	
(take c_{1} time) 1. For $i=1,2, \ldots, n$	
(take c_{2} time) 2.	For $j=i+1, i+2, \ldots, n$
(take c_{3} time) 3.	If $A[i]+A[j]=0$
(take c_{4} time) 4.	Return YES.
(take c_{5} time) 5.	Return No.

- Line 1. total time $\leq c_{1} n$
- Line 2. total time $\leq \sum_{i=1}^{n} c_{2}(n-i)$
- Line 3. total time $\leq \sum_{i=1}^{n} c_{3}(n-i)$

Example: Runtime of an algorithm

An example algorithm (Pseudocode)	
(take c_{1} time) 1.	For $i=1,2, \ldots, n$
(take c_{2} time) 2.	For $j=i+1, i+2, \ldots, n$
(take c_{3} time) 3.	If $A[i]+A[j]=0$
(take c_{4} time) 4.	Return YES.
(take c_{5} time) 5. Return No.	

- Line 1. total time $\leq c_{1} n$
- Line 2. total time $\leq \sum_{i=1}^{n} c_{2}(n-i)$
- Line 3. total time $\leq \sum_{i=1}^{n} c_{3}(n-i)$
- Line 4. total time $\leq \sum_{i=1}^{n} c_{4}(n-i)$

Example: Runtime of an algorithm

An example algorithm (Pseudocode)	
(take c_{1} time) 1. For $i=1,2, \ldots, n$	
(take c_{2} time) 2.	For $j=i+1, i+2, \ldots, n$
(take c_{3} time) 3.	If $A[i]+A[j]=0$
(take c_{4} time) 4.	Return YES.
(take c_{5} time) 5. Return No.	

- Line 1. total time $\leq c_{1} n$
- Line 2. total time $\leq \sum_{i=1}^{n} c_{2}(n-i)$
- Line 3. total time $\leq \sum_{i=1}^{n} c_{3}(n-i)$
- Line 4. total time $\leq \sum_{i=1}^{n} c_{4}(n-i)$
- Line 5. total time $\leq c_{5}$

Example: Runtime of an algorithm

An example algorithm (Pseudocode)	
(take c_{1} time) 1. For $i=1,2, \ldots, n$	
(take c_{2} time) 2. \quad For $j=i+1, i+2, \ldots, n$	
(take c_{3} time) 3.	If $A[i]+A[j]=0$
(take c_{4} time) 4.	Return YES.
(take c_{5} time) 5. Return No.	

- Line 1. total time $\leq c_{1} n$
- Line 2. total time $\leq \sum_{i=1}^{n} c_{2}(n-i)$
- Line 3. total time $\leq \sum_{i=1}^{n} c_{3}(n-i)$
- Line 4. total time $\leq \sum_{i=1}^{n} c_{4}(n-i)$
- Line 5. total time $\leq c_{5}$

Total time spent on an input of size n

$$
\leq c_{1} n+\sum_{i=1}^{n} c_{2}(n-i)+\sum_{i=1}^{n} c_{3}(n-i)+\sum_{i=1}^{n} c_{4}(n-i)+c_{5}=\Theta\left(n^{2}\right)
$$

- On every input of size n, the algorithm spends at most $\Theta\left(n^{2}\right)$ time.
- On every input of size n, the algorithm spends at most $\Theta\left(n^{2}\right)$ time.
- Input sensitivity: There are inputs of size n on which the algorithm spends only $\Theta(1)$ time. [e.g., $A[1]+A[2]=0$]
- On every input of size n, the algorithm spends at most $\Theta\left(n^{2}\right)$ time.
- Input sensitivity: There are inputs of size n on which the algorithm spends only $\Theta(1)$ time. [e.g., $A[1]+A[2]=0$]
- Input sensitivity: There are inputs of size n on which the algorithm spends $\Theta\left(n^{2}\right)$ time. [e.g., $A[1]=1, A[2]=2, \ldots, A[n-1]=n-1$ and $A[n]=-(n-1)]$
- On every input of size n, the algorithm spends at most $\Theta\left(n^{2}\right)$ time.
- Input sensitivity: There are inputs of size n on which the algorithm spends only $\Theta(1)$ time. [e.g., $A[1]+A[2]=0$]
- Input sensitivity: There are inputs of size n on which the algorithm spends $\Theta\left(n^{2}\right)$ time. [e.g., $A[1]=1, A[2]=2, \ldots, A[n-1]=n-1$ and $A[n]=-(n-1)]$
We will say that the algorithm has a runtime of $\Theta\left(n^{2}\right)$.

Runtime of an algorithm

Formally, let

$$
f(n)=\max _{\text {input } I \text { of size } n}(\text { runtime of the algorithm on input } I)
$$

We will focus on how $f(n)$ grows with input size n, asymptotically. \Leftrightarrow Worst-case asymptotic running time of an algorithm.

Worst-case asymptotic running time

- Is a feature of an algorithm for a given computational problem

Worst-case asymptotic running time

- Is a feature of an algorithm for a given computational problem
- Independent of
- programming language
- specific input
- machine (computer)

Worst-case asymptotic running time

- Is a feature of an algorithm for a given computational problem
- Independent of
- programming language
- specific input
- machine (computer)
- Allows us to compare two different algorithms for the same problem.

Worst-case asymptotic running time

- An $\mathcal{O}\left(n^{2}\right)$ time algorithm is better than an $\mathcal{O}\left(n^{3}\right)$ time algorithm
- An $\mathcal{O}(n \log n)$ time algorithm is better than an $\mathcal{O}\left(n^{2}\right)$ time algorithm

Goal

Given a computational problem, our goal will be to find an algorithm for it with smallest possible worst-case asymptotic runtime.

Runtime of an algorithm

Statement

- constant time $\mathcal{O}(1)$: arithmetic/logic operation, access one element in an array
- linear time $\mathcal{O}(n)$: merge two sorted arrays (Lecture 5)
- quadratic time $\mathcal{O}\left(n^{2}\right)$: bubble sort (Lecture 4)
- logarithmic time $\mathcal{O}(\log n)$: binary search (Lecture 6)
- linearithmic time $\mathcal{O}(n \log n)$: merge sort (Lecture 5)

Beyond the worst case runtime analysis

- the best case: find one input that the algorithm can perform the best
- the average case: averaged over all possible inputs for randomized algorithm
- runtime analysis vs. memory analysis

*Examples in TCS, ML theory

Theorem 6 (arbitrary loss). From random initialization, with probability at least $1-e^{-\Omega\left(\log ^{2} m\right)}$, gradient descent with appropriate learning rate satisfy the following.

- If f is nonconvex but σ-gradient dominant (a.k.a. Polyak-Łojasiewicz), GD finds ε-error minimizer in ${ }^{14}$

$$
T=\widetilde{O}\left(\frac{\operatorname{poly}(n, L)}{\sigma \delta^{2}} \cdot \log \frac{1}{\varepsilon}\right) \text { iterations }
$$

$$
\text { as long as } m \geq \widetilde{\Omega}\left(\operatorname{poly}\left(n, L, \delta^{-1}\right) \cdot d \sigma^{-2}\right) .
$$

- If f is convex, then $G D$ finds ε-error minimizer in

$$
T=\widetilde{O}\left(\frac{\operatorname{poly}(n, L)}{\delta^{2}} \cdot \frac{1}{\varepsilon}\right) \text { iterations }
$$

as long as $m \geq \widetilde{\Omega}\left(\operatorname{poly}\left(n, L, \delta^{-1}\right) \cdot d \log \varepsilon^{-1}\right)$.

Figure: time complexity and parameter complexity [AZLS19].

Corollary 1.3. Let \mathcal{D} be the distribution over pairs $(x, y) \in \mathbb{R}^{d} \times \mathbb{R}$ where $x \sim \mathcal{N}(0$, Id $)$ and $y=F(x)$ for a size-S ReLU network F for which the product of the spectral norms of its weight matrices is a constant.

Then there is an algorithm that draws $N=d \log (1 / \delta) \exp \left(O\left(k^{3} / \varepsilon^{2}+k S\right)\right)$ samples, runs in time $\widetilde{O}\left(d^{2} \log (1 / \delta)\right) \exp \left(O\left(k^{3} S^{2} / \varepsilon^{2}+k S^{3}\right)\right)$, and outputs a ReLU network \widetilde{F} such that $\mathbb{E}\left[(y-\widetilde{F}(x))^{2}\right] \leq \varepsilon$ with probability at least $1-\delta$.

Figure: Recall the example in Lecture 1: sample complexity and time complexity [CKM22].

References I

[0] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song, A convergence theory for deep learning via over-parameterization, International Conference on Machine Learning, PMLR, 2019, pp. 242-252.
(Cited on page 33.)
[0] Sitan Chen, Adam R Klivans, and Raghu Meka, Learning deep relu networks is fixed-parameter tractable, 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), IEEE, 2022, pp. 696-707.
(Cited on page 33.)

