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How to analyse runtimes of algorithms?

Preliminaries: Big-O notation
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Basic definitions

Consider any two functions f(n) and g(n) satisfying

f(n) > 0, g(n) > 0 for all positive integer n

▶ g(n) ∈ O(f(n)) [Big O of f(n)] if there exist constants c > 0 and N such that
g(n) ≤ cf(n) for all n > N .

▶ g(n) ∈ Ω(f(n)) [Big Omega of f(n)] if there exist constants c > 0 and N such that
g(n) ≥ cf(n) for all n > N .

▶ g(n) ∈ Θ(f(n)) [Big Theta of f(n)] if g(n) ∈ O(f(n)) and g(n) ∈ Ω(f(n)).
⇔ there exist constants c1, c2 > 0 and N such that c1f(n) ≤ g(n) ≤ c2f(n) for all
n > N .
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Basic definitions

Consider any two functions f(n) and g(n) satisfying

f(n), g(n) > 0 for all positive integer n

▶ g(n) ∈ o(f(n)) [little o of f(n)] if for every c > 0, there exists an N such that
g(n) ≤ cf(n) for all n > N .

⇔ lim
n→∞

g(n)
f(n) = 0 .

▶ g(n) ∈ ω(f(n)) [little omega of f(n)] if for every c > 0, there exists an N such that
g(n) ≥ cf(n) for all n > N .

⇔ lim
n→∞

g(n)
f(n) = ∞ .
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Intuitions

▶ g(n) ∈ O(f(n)) means g ≤ f “asymptotically".
▶ g(n) ∈ Ω(f(n)) means g ≥ f “asymptotically".
▶ g(n) ∈ Θ(f(n)) means g = f “asymptotically".
▶ g(n) ∈ o(f(n)) means g < f “asymptotically".
▶ g(n) ∈ ω(f(n)) means g > f “asymptotically".
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Examples

Example
The function n is in O(n3).

Proof.
Set c = 1, N = 1, then n ≤ cn3 for all n ≥ N . □

Example
The function n3 is not in O(n).

Proof.
Suppose that there exist constants c > 0 and N such that n3 ≤ cn for all n > N . But we have
n3 > cn for all n >

√
c. This leads to a contradiction, and concludes the proof. □
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Abusing the equals sign

▶ We write g(n) = O(f(n)) to denote g(n) ∈ O(f(n)).
▶ Consider the statement O(n2) + O(n3) + 1 = O(n3). Formally, this means that:

Statement
for all f(n) ∈ O(n2) and g(n) ∈ O(n3), we have f(n) + g(n) + 1 ∈ O(n3).

◦ Example: n2

2 + n3

4 = O(n2) + O(n3) = O(n3)
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Principles: useful simplifications

▶ If g(n) = O(f(n)), we have

O(f(n)) + O(g(n)) = O(f(n)) .

◦ Example: 2n4 + n7/3 = O(n7).
▶ If c is a constant, we have

O(cf(n)) = O(f(n)) .

◦ Example 1: O(5n2) = O(n2).
◦ Example 2: O(loga n) = O(logb n) if a, b > 0 are constants.
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Example

Example
Given f(n) = 2

√
ln n and g(n) = n0.0001, check f(n) = O(g(n)) and f(n) , Ω(g(n)).

Proof.
Take the logarithmic operation of f(n) and g(n)...
Updated: We can prove it by the definition. We prove f(n) = O(g(n)) as an example, that
means, we need to find c > 0 and n > N such that f(n) ≤ cg(n)

2
√

ln n ≤ cn0.0001 ⇔
√

ln n ln 2 ≤ ln c + 0.0001 ln n [taking c ≥ 1 for nonnegativity]

⇔
√

ln n ln 2 ≤ 0.0001 ln n [taking c = 1 for simplicity]

⇔
√

ln n ≥ 104 ln 2 ⇔ n ≥ e108(ln 2)2
:= N .

We conclude the proof by taking c = 1 and N := e108(ln 2)2 . □
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Comparison

Figure: source from https://en.wikipedia.org/wiki/Big_O_notation.
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Principles: using limits

▶ If limn→∞
f(n)
g(n) exists (and is finite), then f(n) = O(g(n)).

▶ We can often apply L’Höpital’s rule to calculate this limit

lim
n→∞

f(n)
g(n) = lim

n→∞

f ′(n)
g′(n) .

Remark: Remember the condition when using the L’Höpital’s rule.

Example (Updated)
Consider two functions f(n) = 2n and g(n) = 3n, we have f(n) = O(g(n)) and
f(n) , Ω(g(n)).
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Asymptotic notations and summations (I)
▶ Consider an geometric series f(n) =

∑n
i=1 xi = 1−xn+1

1−x .
◦ If x > 1, then f(n) = Θ(xn).
◦ If x = 1, then f(n) = Θ(n).
◦ If 0 < x < 1, then f(n) = Θ(1).

▶ Dealing with an arithmetic series with two constants a, b

n∑
i=1

(ai + b) =
n∑

i=1
ai +

n∑
i=1

b = a
n(n + 1)

2 + bn = Θ(n2) + Θ(n) = Θ(n2) .

▶ Dealing with an harmonic series:
n∑

i=1

2n

i
= Θ

(
n∑

i=1

n

i

)
= Θ

(
n

n∑
i=1

1
i

)
= Θ(n log n) .

[recall harmonic series:]
∑k

i=1
1
i = ln k + γ + ϵk with the Euler–Mascheroni constant

γ ≈ 0.577 and ϵk ≈ 1
2k .
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Asymptotic notations and summations (II)

▶ Bounding parts of the sum: consider f(n) =
∑n

i=1 i3

◦ upper bound

f(n) =
n∑

i=1
i3 ≤

n∑
i=1

n3 = O(n4) .

◦ lower bound

f(n) =
n∑

i=1
i3 ≥

n∑
i= n

2

n3 ≥
n∑

i= n
2

(n

2 )3 = Ω(n4) .

Accordingly, we have f(n) = Θ(n4).
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Asymptotic notations and summations (III)

▶ Consider the function f(n) =
∑n

i=1 aii
◦ if a > 1, then f(n) = Θ(ann).
◦ if a = 1, then f(n) = Θ(n).
◦ if 0 < a < 1, then f(n) = Θ(1).

▶ Integration: If f(n) is non-decreasing in n, then∫ b

a−1
f(x)dx ≤

b∑
i=a

f(i) ≤
∫ b+1

a

f(x)dx ,

where a < b are integers.
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