Discrete Mathematics and Its Applications 2 (CS147)

Lecture 2: Big-O notation

Fanghui Liu

Department of Computer Science, University of Warwick, UK

How to analyse runtimes of algorithms?

Preliminaries: Big-O notation

Consider any two functions f(n) and g(n) satisfying

f(n) > 0, g(n) > 0 for all positive integer n

▶ $g(n) \in \mathcal{O}(f(n))$ [Big O of f(n)] if there exist constants c > 0 and N such that $g(n) \leq cf(n)$ for all n > N.

Consider any two functions f(n) and g(n) satisfying

f(n) > 0, g(n) > 0 for all positive integer n

- ▶ $g(n) \in \mathcal{O}(f(n))$ [Big O of f(n)] if there exist constants c > 0 and N such that $g(n) \leq cf(n)$ for all n > N.
- ► $g(n) \in \Omega(f(n))$ [Big Omega of f(n)] if there exist constants c > 0 and N such that $g(n) \ge cf(n)$ for all n > N.

Consider any two functions f(n) and g(n) satisfying

 $f(n)>0, g(n)>0 \quad \text{for all positive integer } n$

- ▶ $g(n) \in \mathcal{O}(f(n))$ [Big O of f(n)] if there exist constants c > 0 and N such that $g(n) \leq cf(n)$ for all n > N.
- ► $g(n) \in \Omega(f(n))$ [Big Omega of f(n)] if there exist constants c > 0 and N such that $g(n) \ge cf(n)$ for all n > N.
- ► $g(n) \in \Theta(f(n))$ [Big Theta of f(n)] if $g(n) \in \mathcal{O}(f(n))$ and $g(n) \in \Omega(f(n))$. \Leftrightarrow there exist constants $c_1, c_2 > 0$ and N such that $c_1f(n) \leq g(n) \leq c_2f(n)$ for all n > N.

Consider any two functions $f(\boldsymbol{n})$ and $g(\boldsymbol{n})$ satisfying

f(n), g(n) > 0 for all positive integer n

• $g(n) \in o(f(n))$ [little o of f(n)] if for every c > 0, there exists an N such that $g(n) \leq cf(n)$ for all n > N.

$$\Leftrightarrow \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0 \,.$$

• $g(n) \in \omega(f(n))$ [little omega of f(n)] if for every c > 0, there exists an N such that $g(n) \ge cf(n)$ for all n > N.

$$\Leftrightarrow \lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty \,.$$

Intuitions

- ▶ $g(n) \in \mathcal{O}(f(n))$ means $g \leq f$ "asymptotically".
- ▶ $g(n) \in \Omega(f(n))$ means $g \ge f$ "asymptotically".
- ▶ $g(n) \in \Theta(f(n))$ means g = f "asymptotically".
- ▶ $g(n) \in o(f(n))$ means g < f "asymptotically".
- ▶ $g(n) \in \omega(f(n))$ means g > f "asymptotically".

Example

The function n is in $\mathcal{O}(n^3)$.

Example

The function n is in $\mathcal{O}(n^3)$.

Proof.

Set c = 1, N = 1, then $n \le cn^3$ for all $n \ge N$.

Example

The function n is in $\mathcal{O}(n^3)$.

Proof.

Set c = 1, N = 1, then $n \le cn^3$ for all $n \ge N$.

Example

The function n^3 is not in $\mathcal{O}(n)$.

Example

The function n is in $\mathcal{O}(n^3)$.

Proof.

Set c = 1, N = 1, then $n \le cn^3$ for all $n \ge N$.

Example

```
The function n^3 is not in \mathcal{O}(n).
```

Proof.

Suppose that there exist constants c > 0 and N such that $n^3 \le cn$ for all n > N. But we have $n^3 > cn$ for all $n > \sqrt{c}$. This leads to a contradiction, and concludes the proof.

Abusing the equals sign

- ▶ We write g(n) = O(f(n)) to denote $g(n) \in O(f(n))$.
- ▶ Consider the statement $O(n^2) + O(n^3) + 1 = O(n^3)$. Formally, this means that:

Statement

for all
$$f(n) \in \mathcal{O}(n^2)$$
 and $g(n) \in \mathcal{O}(n^3)$, we have $f(n) + g(n) + 1 \in \mathcal{O}(n^3)$.

• Example:
$$\frac{n^2}{2} + \frac{n^3}{4} = \mathcal{O}(n^2) + \mathcal{O}(n^3) = \mathcal{O}(n^3)$$

Principles: useful simplifications

• If
$$g(n) = \mathcal{O}(f(n))$$
, we have

$$\mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(f(n)).$$

• Example:
$$2n^4 + n^7/3 = \mathcal{O}(n^7)$$
.

• If c is a constant, we have

$$\mathcal{O}(cf(n)) = \mathcal{O}(f(n)).$$

Example

Given
$$f(n) = 2^{\sqrt{\ln n}}$$
 and $g(n) = n^{0.0001}$, check $f(n) = \mathcal{O}(g(n))$ and $f(n) \neq \Omega(g(n))$.

Example

Given
$$f(n) = 2^{\sqrt{\ln n}}$$
 and $g(n) = n^{0.0001}$, check $f(n) = \mathcal{O}(g(n))$ and $f(n) \neq \Omega(g(n))$.

Proof.

Take the logarithmic operation of f(n) and g(n)...Updated: We can prove it by the definition. We prove $f(n) = \mathcal{O}(g(n))$ as an example, that means, we need to find c > 0 and n > N such that $f(n) \leq cg(n)$

$$\begin{split} & 2^{\sqrt{\ln n}} \leq c n^{0.0001} \quad \Leftrightarrow \sqrt{\ln n} \ln 2 \leq \ln c + 0.0001 \ln n \quad \text{[taking } c \geq 1 \text{ for nonnegativity]} \\ & \Leftrightarrow \sqrt{\ln n} \ln 2 \leq 0.0001 \ln n \quad \text{[taking } c = 1 \text{ for simplicity]} \\ & \Leftrightarrow \sqrt{\ln n} \geq 10^4 \ln 2 \quad \Leftrightarrow n \geq e^{10^8 (\ln 2)^2} := N \,. \end{split}$$

We conclude the proof by taking c = 1 and $N := e^{10^8 (\ln 2)^2}$.

Comparison

Figure: source from https://en.wikipedia.org/wiki/Big_0_notation.

Principles: using limits

• If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)}$$
 exists (and is finite), then $f(n) = \mathcal{O}(g(n))$.

Principles: using limits

▶ If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)}$$
 exists (and is finite), then $f(n) = \mathcal{O}(g(n))$.

We can often apply L'Höpital's rule to calculate this limit

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}.$$

Remark: Remember the condition when using the L'Höpital's rule.

Example (Updated)

Consider two functions $f(n) = 2^n$ and $g(n) = 3^n$, we have $f(n) = \mathcal{O}(g(n))$ and $f(n) \neq \Omega(g(n))$.

Asymptotic notations and summations (I)

Consider an geometric series f(n) = ∑_{i=1}ⁿ xⁱ = 1-xⁿ⁺¹/(1-x).
o If x > 1, then f(n) = Θ(xⁿ).
o If x = 1, then f(n) = Θ(n).
o If 0 < x < 1, then f(n) = Θ(1).

Asymptotic notations and summations (I)

Consider an geometric series f(n) = ∑_{i=1}ⁿ xⁱ = 1-xⁿ⁺¹/(1-x).
o If x > 1, then f(n) = Θ(xⁿ).
o If x = 1, then f(n) = Θ(n).
o If 0 < x < 1, then f(n) = Θ(1).

▶ Dealing with an arithmetic series with two constants *a*, *b*

$$\sum_{i=1}^{n} (ai+b) = \sum_{i=1}^{n} ai + \sum_{i=1}^{n} b = a \frac{n(n+1)}{2} + bn = \Theta(n^2) + \Theta(n) = \Theta(n^2) \,.$$

Asymptotic notations and summations (I)

Consider an geometric series f(n) = ∑_{i=1}ⁿ xⁱ = 1-xⁿ⁺¹/(1-x).
o If x > 1, then f(n) = Θ(xⁿ).
o If x = 1, then f(n) = Θ(n).
o If 0 < x < 1, then f(n) = Θ(1).

Dealing with an arithmetic series with two constants a, b

$$\sum_{i=1}^{n} (ai+b) = \sum_{i=1}^{n} ai + \sum_{i=1}^{n} b = a \frac{n(n+1)}{2} + bn = \Theta(n^2) + \Theta(n) = \Theta(n^2).$$

Dealing with an harmonic series:

$$\sum_{i=1}^n \frac{2n}{i} = \Theta\left(\sum_{i=1}^n \frac{n}{i}\right) = \Theta\left(n\sum_{i=1}^n \frac{1}{i}\right) = \Theta(n\log n)\,.$$

[recall harmonic series:] $\sum_{i=1}^{k} \frac{1}{i} = \ln k + \gamma + \epsilon_k$ with the Euler–Mascheroni constant $\gamma \approx 0.577$ and $\epsilon_k \approx \frac{1}{2k}$.

Asymptotic notations and summations (II)

▶ Bounding parts of the sum: consider f(n) = ∑_{i=1}ⁿ i³
 ◦ upper bound

$$f(n) = \sum_{i=1}^{n} i^3 \le \sum_{i=1}^{n} n^3 = \mathcal{O}(n^4).$$

 \circ lower bound

$$f(n) = \sum_{i=1}^{n} i^{3} \ge \sum_{i=\frac{n}{2}}^{n} n^{3} \ge \sum_{i=\frac{n}{2}}^{n} (\frac{n}{2})^{3} = \Omega(n^{4}).$$

Accordingly, we have $f(n)=\Theta(n^4).$

Asymptotic notations and summations (III)

Consider the function $f(n) = \sum_{i=1}^{n} a^{i}i$ \circ if a > 1, then $f(n) = \Theta(a^{n}n)$. \circ if a = 1, then $f(n) = \Theta(n)$. \circ if 0 < a < 1, then $f(n) = \Theta(1)$.

Asymptotic notations and summations (III)

Consider the function $f(n) = \sum_{i=1}^{n} a^{i}i$ \circ if a > 1, then $f(n) = \Theta(a^{n}n)$. \circ if a = 1, then $f(n) = \Theta(n)$. \circ if 0 < a < 1, then $f(n) = \Theta(1)$.

• Integration: If f(n) is non-decreasing in n, then

$$\int_{a-1}^{b} f(x) \mathrm{d}x \le \sum_{i=a}^{b} f(i) \le \int_{a}^{b+1} f(x) \mathrm{d}x \,,$$

where a < b are integers.

References |