Discrete Mathematics and Its Applications 2 (CS147)

Lecture 2: Big-O notation

Fanghui Liu
Department of Computer Science, University of Warwick, UK

How to analyse runtimes of algorithms?

Preliminaries: Big-O notation

Basic definitions

Consider any two functions $f(n)$ and $g(n)$ satisfying

$$
f(n)>0, g(n)>0 \quad \text { for all positive integer } n
$$

- $g(n) \in \mathcal{O}(f(n))$ [Big O of $f(n)$] if there exist constants $c>0$ and N such that $g(n) \leq c f(n)$ for all $n>N$.

Basic definitions

Consider any two functions $f(n)$ and $g(n)$ satisfying

$$
f(n)>0, g(n)>0 \quad \text { for all positive integer } n
$$

- $g(n) \in \mathcal{O}(f(n))$ [Big O of $f(n)$] if there exist constants $c>0$ and N such that $g(n) \leq c f(n)$ for all $n>N$.
- $g(n) \in \Omega(f(n))$ [Big Omega of $f(n)$] if there exist constants $c>0$ and N such that $g(n) \geq c f(n)$ for all $n>N$.

Basic definitions

Consider any two functions $f(n)$ and $g(n)$ satisfying

$$
f(n)>0, g(n)>0 \quad \text { for all positive integer } n
$$

- $g(n) \in \mathcal{O}(f(n))$ [Big O of $f(n)$] if there exist constants $c>0$ and N such that $g(n) \leq c f(n)$ for all $n>N$.
- $g(n) \in \Omega(f(n))$ [Big Omega of $f(n)$] if there exist constants $c>0$ and N such that $g(n) \geq c f(n)$ for all $n>N$.
- $g(n) \in \Theta(f(n))$ [Big Theta of $f(n)]$ if $g(n) \in \mathcal{O}(f(n))$ and $g(n) \in \Omega(f(n))$. \Leftrightarrow there exist constants $c_{1}, c_{2}>0$ and N such that $c_{1} f(n) \leq g(n) \leq c_{2} f(n)$ for all $n>N$.

Basic definitions

Consider any two functions $f(n)$ and $g(n)$ satisfying

$$
f(n), g(n)>0 \quad \text { for all positive integer } n
$$

- $g(n) \in o(f(n))$ [little o of $f(n)$] if for every $c>0$, there exists an N such that $g(n) \leq c f(n)$ for all $n>N$.

$$
\Leftrightarrow \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=0 .
$$

- $g(n) \in \omega(f(n))$ [little omega of $f(n)$] if for every $c>0$, there exists an N such that $g(n) \geq c f(n)$ for all $n>N$.

$$
\Leftrightarrow \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=\infty .
$$

Intuitions

- $g(n) \in \mathcal{O}(f(n))$ means $g \leq f$ "asymptotically".
- $g(n) \in \Omega(f(n))$ means $g \geq f$ "asymptotically".
- $g(n) \in \Theta(f(n))$ means $g=f$ "asymptotically".
- $g(n) \in o(f(n))$ means $g<f$ "asymptotically".
- $g(n) \in \omega(f(n))$ means $g>f$ "asymptotically".

Examples

Example

The function n is in $\mathcal{O}\left(n^{3}\right)$.

Examples

Example

The function n is in $\mathcal{O}\left(n^{3}\right)$.

Proof.

Set $c=1, N=1$, then $n \leq c n^{3}$ for all $n \geq N$.

Examples

Example

The function n is in $\mathcal{O}\left(n^{3}\right)$.

Proof.

Set $c=1, N=1$, then $n \leq c n^{3}$ for all $n \geq N$.

Example

The function n^{3} is not in $\mathcal{O}(n)$.

Examples

Example

The function n is in $\mathcal{O}\left(n^{3}\right)$.

Proof.

Set $c=1, N=1$, then $n \leq c n^{3}$ for all $n \geq N$.

Example

The function n^{3} is not in $\mathcal{O}(n)$.

Proof.

Suppose that there exist constants $c>0$ and N such that $n^{3} \leq c n$ for all $n>N$. But we have $n^{3}>c n$ for all $n>\sqrt{c}$. This leads to a contradiction, and concludes the proof.

Abusing the equals sign

- We write $g(n)=\mathcal{O}(f(n))$ to denote $g(n) \in \mathcal{O}(f(n))$.
- Consider the statement $\mathcal{O}\left(n^{2}\right)+\mathcal{O}\left(n^{3}\right)+1=\mathcal{O}\left(n^{3}\right)$. Formally, this means that:

Statement

for all $f(n) \in \mathcal{O}\left(n^{2}\right)$ and $g(n) \in \mathcal{O}\left(n^{3}\right)$, we have $f(n)+g(n)+1 \in \mathcal{O}\left(n^{3}\right)$.

- Example: $\frac{n^{2}}{2}+\frac{n^{3}}{4}=\mathcal{O}\left(n^{2}\right)+\mathcal{O}\left(n^{3}\right)=\mathcal{O}\left(n^{3}\right)$

Principles: useful simplifications

- If $g(n)=\mathcal{O}(f(n))$, we have

$$
\mathcal{O}(f(n))+\mathcal{O}(g(n))=\mathcal{O}(f(n))
$$

- Example: $2 n^{4}+n^{7} / 3=\mathcal{O}\left(n^{7}\right)$.
- If c is a constant, we have

$$
\mathcal{O}(c f(n))=\mathcal{O}(f(n))
$$

- Example 1: $\mathcal{O}\left(5 n^{2}\right)=\mathcal{O}\left(n^{2}\right)$.
- Example 2: $\mathcal{O}\left(\log _{a} n\right)=\mathcal{O}\left(\log _{b} n\right)$ if $a, b>0$ are constants.

Example

Example

Given $f(n)=2^{\sqrt{\ln n}}$ and $g(n)=n^{0.0001}$, check $f(n)=\mathcal{O}(g(n))$ and $f(n) \neq \Omega(g(n))$.

Example

Example

Given $f(n)=2^{\sqrt{\ln n}}$ and $g(n)=n^{0.0001}$, check $f(n)=\mathcal{O}(g(n))$ and $f(n) \neq \Omega(g(n))$.

Proof.

Take the logarithmic operation of $f(n)$ and $g(n) \ldots$
Updated: We can prove it by the definition. We prove $f(n)=\mathcal{O}(g(n))$ as an example, that means, we need to find $c>0$ and $n>N$ such that $f(n) \leq c g(n)$

$$
\begin{aligned}
& 2^{\sqrt{\ln n}} \leq c n^{0.0001} \quad \Leftrightarrow \sqrt{\ln n} \ln 2 \leq \ln c+0.0001 \ln n \quad \text { [taking } c \geq 1 \text { for nonnegativity] } \\
& \Leftrightarrow \sqrt{\ln n} \ln 2 \leq 0.0001 \ln n \quad[\text { taking } c=1 \text { for simplicity] } \\
& \Leftrightarrow \sqrt{\ln n} \geq 10^{4} \ln 2 \quad \Leftrightarrow n \geq e^{10^{8}(\ln 2)^{2}}:=N .
\end{aligned}
$$

We conclude the proof by taking $c=1$ and $N:=e^{10^{8}(\ln 2)^{2}}$.

Comparison

Figure: source from https://en.wikipedia.org/wiki/Big_0_notation.

Principles: using limits

- If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$ exists (and is finite), then $f(n)=\mathcal{O}(g(n))$.

Principles: using limits

- If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$ exists (and is finite), then $f(n)=\mathcal{O}(g(n))$.
- We can often apply L'Höpital's rule to calculate this limit

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)} .
$$

Remark: Remember the condition when using the L'Höpital's rule.

Example (Updated)

Consider two functions $f(n)=2^{n}$ and $g(n)=3^{n}$, we have $f(n)=\mathcal{O}(g(n))$ and $f(n) \neq \Omega(g(n))$.

Asymptotic notations and summations (1)

- Consider an geometric series $f(n)=\sum_{i=1}^{n} x^{i}=\frac{1-x^{n+1}}{1-x}$.
- If $x>1$, then $f(n)=\Theta\left(x^{n}\right)$.
- If $x=1$, then $f(n)=\Theta(n)$.
- If $0<x<1$, then $f(n)=\Theta(1)$.

Asymptotic notations and summations (1)

- Consider an geometric series $f(n)=\sum_{i=1}^{n} x^{i}=\frac{1-x^{n+1}}{1-x}$.
- If $x>1$, then $f(n)=\Theta\left(x^{n}\right)$.
- If $x=1$, then $f(n)=\Theta(n)$.
- If $0<x<1$, then $f(n)=\Theta(1)$.
- Dealing with an arithmetic series with two constants a, b

$$
\sum_{i=1}^{n}(a i+b)=\sum_{i=1}^{n} a i+\sum_{i=1}^{n} b=a \frac{n(n+1)}{2}+b n=\Theta\left(n^{2}\right)+\Theta(n)=\Theta\left(n^{2}\right)
$$

Asymptotic notations and summations (1)

- Consider an geometric series $f(n)=\sum_{i=1}^{n} x^{i}=\frac{1-x^{n+1}}{1-x}$.
- If $x>1$, then $f(n)=\Theta\left(x^{n}\right)$.
- If $x=1$, then $f(n)=\Theta(n)$.
- If $0<x<1$, then $f(n)=\Theta(1)$.
- Dealing with an arithmetic series with two constants a, b

$$
\sum_{i=1}^{n}(a i+b)=\sum_{i=1}^{n} a i+\sum_{i=1}^{n} b=a \frac{n(n+1)}{2}+b n=\Theta\left(n^{2}\right)+\Theta(n)=\Theta\left(n^{2}\right)
$$

- Dealing with an harmonic series:

$$
\sum_{i=1}^{n} \frac{2 n}{i}=\Theta\left(\sum_{i=1}^{n} \frac{n}{i}\right)=\Theta\left(n \sum_{i=1}^{n} \frac{1}{i}\right)=\Theta(n \log n) .
$$

[recall harmonic series:] $\sum_{i=1}^{k} \frac{1}{i}=\ln k+\gamma+\epsilon_{k}$ with the Euler-Mascheroni constant $\gamma \approx 0.577$ and $\epsilon_{k} \approx \frac{1}{2 k}$.

Asymptotic notations and summations (II)

- Bounding parts of the sum: consider $f(n)=\sum_{i=1}^{n} i^{3}$
- upper bound

$$
f(n)=\sum_{i=1}^{n} i^{3} \leq \sum_{i=1}^{n} n^{3}=\mathcal{O}\left(n^{4}\right)
$$

- lower bound

$$
f(n)=\sum_{i=1}^{n} i^{3} \geq \sum_{i=\frac{n}{2}}^{n} n^{3} \geq \sum_{i=\frac{n}{2}}^{n}\left(\frac{n}{2}\right)^{3}=\Omega\left(n^{4}\right)
$$

Accordingly, we have $f(n)=\Theta\left(n^{4}\right)$.

Asymptotic notations and summations (III)

- Consider the function $f(n)=\sum_{i=1}^{n} a^{i} i$
- if $a>1$, then $f(n)=\Theta\left(a^{n} n\right)$.
- if $a=1$, then $f(n)=\Theta(n)$.
- if $0<a<1$, then $f(n)=\Theta(1)$.

Asymptotic notations and summations (III)

- Consider the function $f(n)=\sum_{i=1}^{n} a^{i} i$
- if $a>1$, then $f(n)=\Theta\left(a^{n} n\right)$.
- if $a=1$, then $f(n)=\Theta(n)$.
- if $0<a<1$, then $f(n)=\Theta(1)$.
- Integration: If $f(n)$ is non-decreasing in n, then

$$
\int_{a-1}^{b} f(x) \mathrm{d} x \leq \sum_{i=a}^{b} f(i) \leq \int_{a}^{b+1} f(x) \mathrm{d} x,
$$

where $a<b$ are integers.

References I

