Discrete Mathematics and Its Applications 2
(CS147)

*Lecture 15: Analysis of Randomized quick-sort

Fanghui Liu

Department of Computer Science, University of Warwick, UK

Disaring .
WARWICK [) COMPUTER SCIENCE l:m

THE UNIVERSITY OF WARWICK

Recall Deterministic Quick-sort algorithm in Lecture 8

Algorithm 1: Deterministic Quicksort

Input: An array A[1,2,...,n]
Output: An sorted array A[1,2,...,n]

pivot < A[n] [always choose the rightmost element] ;

Ssmaller < [l Slarger <[

fori=1,...,ndo
if Afi] < pivot then
‘ Ssmaller.append(A[i])?
end

else S|5rger.append (A[a]);
end
return [Quicksort(S

smaller): Pivot,
Quicksort(;

Slarger

worst case running time complexity ©(n?).

i« CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 2/ 14

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

GRORORONGNENONERORE)
EIONONONGNONONORON -/

Lesser values go to the left, equal or greater values go to the right

ONORONON s RORONORGND)

Repeat step 1 with the two sub lists

Eolol NN JORONON o/

Repeat step 2 with the sub lists:

DRORONON s N NONORONG)

and again and again!

Choose a pivot

0o20p000E0
0000800GG
020ooo000@0
00E000800G06
o0e0oooo0o000
0830000000
000000000

Randomized Quick-sort algorithm

Randomized!

making the algorithm randomized gives us more control over the running time!

Algorithm 2: Randomized Quick-sort

Input: An array A[1,2,...,n]
Output: An sorted array A[1,2,...,n]
1 [randomly choose pivot uniformly] ;
2 Ssmaller < [Siarger < [
fori=1,...,ndo
if A[i] < pivot then
‘ S,

3

4

5 Ali]);
6 end

7

8

9

smaller.append(
else Sjarger.append (Al]);

end

return [Quicksort(Sgyller) Pivot, Quicksort(S|arger) |5

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 3/ 14

Worst-case expected-time bound

> the worst case: T'(n) = max T(I
inputs I of size n

> the average case: T(n) = avg T(I)
inputs I of size n

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 4/ 14

Worst-case expected-time bound

> the worst case: T'(n) = max T(I
inputs I of size n
> the average case: T(n) = avg T(I)
inputs I of size n
Remark: 1) Merge-sort has both worst-case and average-case time O(nlogn), independent of
the input.
2) for some algorithms, the running time depends on the input, e.g., Quick-sort.

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 4/ 14

vy

Worst-case expected-time bound

> the worst case: T'(n) = max T(I
inputs I of size n

> the average case: T(n) = avg T(I)
inputs I of size n

Remark: 1) Merge-sort has both worst-case and average-case time O(nlogn), independent of
the input.
2) for some algorithms, the running time depends on the input, e.g., Quick-sort.

Target: Worst-case expected-time bound

We will prove that, for any given input array I of n elements, the expected time of randomized
quick-sort E[T(I)] is O(nlogn).

> This is worst-case expected-time bound, better than the average case w.r.t the
requirement on the inputs

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 4/ 14

Analysis via Recurrence

Theorem (Recall: total expectation theorem)

Given a probability space ({2, F, Pr), consider a partition { B;}7_; of), then the expectation
of a random variable X can be represented as

E(X) =) E(X|B;)Pr(B;)

j=1

vy

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 5/ 14

Analysis via Recurrence

Theorem (Recall: total expectation theorem)

Given a probability space ({2, F, Pr), consider a partition { B;}7_; of), then the expectation
of a random variable X can be represented as

E(X) =) E(X|B;)Pr(B;)

Jj=1

> Given an array A of size n, let C,, be the number of comparisons needed for A
» (C,, is a random variable

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 5/ 14

Analysis via Recurrence

Theorem (Recall: total expectation theorem)
Given a probability space ({2, F, Pr), consider a partition { B;}7_; of), then the expectation
of a random variable X can be represented as

E(X) =) E(X|B;)Pr(B;)

j=1

> Given an array A of size n, let C,, be the number of comparisons needed for A
» (), is a random variable

> event B;: choose the j-th smallest value of A (i.e., rank j) as the pivot

» Pr(Bj)=1/n

=1

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 5/ 14

Solution

event B;: the selected pivot is the j-th smallest value

> we take n — 1 comparisons for split

A CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 6/ 14

Solution

event B;: the selected pivot is the j-th smallest value
> we take n — 1 comparisons for split

> the set Af;ft of values smaller than it has size j — 1

> the set Afight of values greater has size n — j

A CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 6/ 14

Solution

event B;: the selected pivot is the j-th smallest value
> we take n — 1 comparisons for split
> the set Af;ft of values smaller than it has size j — 1

> the set A’

right Of values greater has size n — j

Given event Bj, the needed comparisons are n — 1+ Cj_1 + Cy—;

A CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 6/ 14

Solution

event B;: the selected pivot is the j-th smallest value
> we take n — 1 comparisons for split
> the set Af;ft of values smaller than it has size j — 1

J
> the set Ay,

of values greater has size n — j
Given event Bj, the needed comparisons are n — 1+ C;_1 + Cp_;

n

> E(Cy|B;)Pr(B;)

=1

5
[
je
ch
I

1
= (=14 M1+ M)~

j=1
2n—l

—n—l—i—gZMj.
j=1

A CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 6/ 14

Results

Theorem
M, = O(nlogn)

Proof.
(Guess and) Verify by induction.!

Ihttps://www.cl.cam.ac.uk/teaching/1920/Probablty/materials/Lectureb.pdf for details.

A CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 7/ 14

https://www.cl.cam.ac.uk/teaching/1920/Probablty/materials/Lecture5.pdf

Results

Theorem
M, = O(nlogn)

Proof.
(Guess and) Verify by induction.!

In the next...
Slick analysis of QuickSort

Ihttps://www.cl.cam.ac.uk/teaching/1920/Probablty/materials/Lectureb.pdf for details.

Y., CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 7/ 14

https://www.cl.cam.ac.uk/teaching/1920/Probablty/materials/Lecture5.pdf

vy

wicK

Property of deterministic/randomized quick-sort

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

GRONORONORONONONGEG)
OIOJONORGNONONONOR >/

Lesser values go to the left, equal or greater values go to the right

ONERONON s RGRONORUEG)

Repeat step 1 with the two sub lists

Eolol XN JORONON </

Repeat step 2 with the sub lists:

WEeEBeBO®E®

and again and again!

0000000
080 BO0DNAEG

0200000000
000000006
0000000000
0030000000
0000000000

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 8/ 14

> the pivot is compared with every element
in the array exactly once.

> the pivot will be excluded from the
recursive calls

property

> a) If two elements are compared, then one
of them is pivot.

> b) If two elements belong to .S and

smaller

Slarger' they will be never compared.
> c) Any two fixed elements are compared at
most once!

o because of a) and b)

Theoretical results

Theorem

Given an array A ={ay,as,- - ,an} with size n, denote Z as the number of comparisons for
randomized quick-sort, then E[Z] < 2nlogn.

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 9/ 14

Theoretical results

Theorem

Given an array A ={ay,as,- - ,an} with size n, denote Z as the number of comparisons for
randomized quick-sort, then E[Z] < 2nlogn.

> For i,j € [n] with 7 # j, event R;; denotes the element a; is compared with a;
> X;; is an indicator random variable for R;;

X, — 1 if a;,a; are compared
Y0 otherwise.

then we have Z =}, . X;; [using property c)]. This is equivalent to:

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 9/ 14

Theoretical results

Theorem

Given an array A = {a1,az,- - ,a,} with size n, denote Z as the number of comparisons for
randomized quick-sort, then E[Z] < 2nlogn.

> For i,j € [n] with 7 # j, event R;; denotes the element a; is compared with a;
> X;; is an indicator random variable for R;;
X, — 1 if a;,a; are compared
0 otherwise.
then we have Z =}, . X;; [using property c)]. This is equivalent to:

Let A* = {af,a3,--- ,a}} be the correctly sorted list. Denote a random variable Y;; with
i,j € [n] as

V. — 1 if aj,a} are compared
70 otherwise.

then we have Z = %" ._.Y,; [using property c)].

1<j

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 9/ 14

Question: what is Pr(Y;; =1)?

To determine when a; and a are compared, we need to ensure

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 14

Question: what is Pr(Y;; =1)?

*
J
> either a; or a} to be chosen as a pivot [property a)]

To determine when a} and a are compared, we need to ensure

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 14

Question: what is Pr(Y;; =1)?

*
J
> either a; or a} to be chosen as a pivot [property a)]

To determine when a} and a are compared, we need to ensure

> We cannot choose any of {a},, - ,aj_;} as pivot. Otherwise a; and a; are split into
two different sets, and will never be compared. [property b)]

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 14

vy

Question: what is Pr(Y;; =1)?

To determine when a; and a are compared, we need to ensure

> either a; or a} to be chosen as a pivot [property a)]

> We cannot choose any of {a},, - ,aj_;} as pivot. Otherwise a; and a; are split into
two different sets, and will never be compared. [property b)]

That means, we are doing a dart game over {a},a; ,, -+ ,aj_;,a}} (if beyond this set, we
throw another dart): we throw a dart at random into the array

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 14

vy

Question: what is Pr(Y;; =1)?

To determine when a; and a are compared, we need to ensure
> either a; or a} to be chosen as a pivot [property a)]

> We cannot choose any of {a},, - ,aj_;} as pivot. Otherwise a; and a; are split into
two different sets, and will never be compared. [property b)]

That means, we are doing a dart game over {a},a; ,, -+ ,aj_;,a}} (if beyond this set, we
throw another dart): we throw a dart at random into the array

> if we hit a} or a;f, then Y;; =1

> if we hit af,, -+ ,aj_y, then Y;; =0

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 14

vy

Question: what is Pr(Y;; =1)?

*
J
> either a; or a} to be chosen as a pivot [property a)]

To determine when a} and a are compared, we need to ensure

> We cannot choose any of {a},, - ,aj_;} as pivot. Otherwise a; and a; are split into
two different sets, and will never be compared. [property b)]

That means, we are doing a dart game over {a},a; ,, -+ ,aj_;,a}} (if beyond this set, we
throw another dart): we throw a dart at random into the array

> if we hit a} or a;f, then Y;; =1
> if we hit af,, -+ ,aj_y, then Y;; =0

Accordingly, we have

and E(Yv”) = PT(Y;;j =].)

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 14

Results

Bzl = Y BV =2 Y. 1 -

i<j i=1 j=i+1

where we observe

11
ifi=1 =—4-
=L 3513

1 1
Ti=2 35713
fio3 L4l
] = —_ —_
'T T3
1
i L
ifi=n-1, 3

-1 _
where we use Y o > 1ol

A CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 11/ 14

+

|

+

n—2+

1

n—1

Results

IR Z

1<J =1 5= z+1

Recall the definition of harmonic numbers,

H, iE O(logn) =

Then we have

where we use ZZ LT 2 n-l

A CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 11/ 14

n—1

1
logn+'y+2—+(9(

1
n2

)

n

n — 3
2;z+1 g%‘2;z’+1

1

Numerical validations?

> setting (left and middle): 1000 arrays with size 1000, run 50 times.
> setting (right): a fixed reverse-sorted input array with size 1000

5000 7000

6000
4000
5000

3000 4000

2000 3000

2000

1000
1000

© 5000 10000 11000 12000 13000 14000 15000 ©75000 10000 11000 12000 13000 14000 15000

Number of Array Comparisons Number of Array Comparisons
Figure: Distribution of run-time of Figure: Distribution of run-time of
deterministic Quick-sort over randomized Quick-sort over random
random array inputs. array inputs.

2figure credit: https://balaramdb.com/2021/08/analysis-of-randomized-quicksort/

wio. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 12/ 14

https://balaramdb.com/2021/08/analysis-of-randomized-quicksort/

Numerical validations?

> setting (left and middle): 1000 arrays with size 1000, run 50 times.
> setting (right): a fixed reverse-sorted input array with size 1000

120
5000 7000
100
6000
2000 80
5000
60
3000 4000
40
2000 3000
20
2000
1000 o
1000 10000 11000 12000 13600 14600
Number of Array Comparisons
9000 10000 11000 12000 13000 14000 15000 ©75000 10000 11000 12000 13000 14000 15000
Number of Array Comparisons Number of Array Comparisons

Figure: Distribution of run-time of
Figure: Distribution of run-time of Figure: Distribution of run-time of randomized Quick-sort over a fixed

deterministic Quick-sort over randomized Quick-sort over random reverse-sorted input array.
random array inputs. array inputs. Deterministic quick-sort takes
499,500 comparisons.

2figure credit: https://balaramdb.com/2021/08/analysis-of-randomized-quicksort/

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 12/ 14

https://balaramdb.com/2021/08/analysis-of-randomized-quicksort/

vy

Comparison of sorting algorithms

check more details if you're interested in
https://en.wikipedia.org/wiki/Sorting_algorithm

Algorithm Best case Average case Worst case Stable

Bubble-sort O(n) O(n?) O(n?) v

Merge-sort O(nlogn) O(nlogn) O(nlogn) v
Quick-sort (deterministic) O(nlogn) O(nlogn) O(n?) X
Quick-sort (randomized) O(nlogn) O(nlogn) O(n?) X

Remark: the worst-case expected-time complexity for randomized quick-sort is O(nlogn).

ﬁa’}bleiﬁ
" ‘:’i. o stable: sort equal elements in the same order that they
appear in the input

a s

Z ¢ L

A as
|

Not stable

2

aalfvv v Ras

4% v

$ Uy aan| Ay
< z

L

N

.

2

5 7
X3 Y v saa
O

v 3

MERTETYERE S
Z < < L

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 13/ 14

a

https://en.wikipedia.org/wiki/Sorting_algorithm

Thanks for your attention!

Q&A

my homepage www.1lfhsgre.org for more information!

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 14/ 14

www.lfhsgre.org

vy

Curve fitting from under-fitting to benign overfitting

e

7\
o/

~"

() yi = fo(xi) +€

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 1/ 1

https://windowsontheory.org/2019/12/05/deep-double-descent/

Curve fitting from under-fitting to benign overfitting

N
e

(a) under-fitting

vy

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 1/ 1

https://windowsontheory.org/2019/12/05/deep-double-descent/

Curve fitting from under-fitting to benign overfitting

/ //m\ P / a .
\W'/ 4 :

(a) under-fitting (b) sweet spot

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 1/ 1

https://windowsontheory.org/2019/12/05/deep-double-descent/

Curve fitting from under-fitting to benign overfitting

S \ TN

(a) under-fitting) sweet spot (c) overfitting

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 1/ 1

https://windowsontheory.org/2019/12/05/deep-double-descent/

Curve fitting from under-fitting to benign overfitting

/. / \
| \/ \ \ /\,J

(a) under-fitting) sweet spot (c) overfitting (d) benign overfitting

Figure: Test performance on curve fitting: source from Open Al.

Y., CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 1/ 1

https://windowsontheory.org/2019/12/05/deep-double-descent/

	Appendix

