Discrete Mathematics and Its Applications 2 (CS147)

*Lecture 15: Analysis of Randomized quick-sort

Fanghui Liu

Department of Computer Science, University of Warwick, UK

Recall Deterministic Quick-sort algorithm in Lecture 8

```
Algorithm 1: Deterministic Quicksort
Input: An array A[1, 2, \ldots, n]
Output: An sorted array A[1, 2, \ldots, n]
pivot \leftarrow A[n] [always choose the rightmost element];
S_{\text{smaller}} \leftarrow [], S_{\text{larger}} \leftarrow [];
for i = 1, \ldots, n do
   if A[i] \leq pivot then
    S_{\text{smaller,append}}(A[i]);
    end
   else S_{\text{larger,append}}(A[i]);
end
return [Quicksort(S_{smaller}), pivot,
Quicksort(S_{larger})];
```

5 3 9 8 7 2 4 Step 1: Choose a pivot Step 2: Lesser values go to the left, equal or greater values go to the right 3 2 4 1 5 5 9 8 7 6 Step 3: Repeat step 1 with the two sub lists 3 2 4 1 5 5 9 8 7 6 Step 4: Repeat step 2 with the sub lists: 1 3 2 4 5 5 6 9 Step 5: and again and again! 1 3 2 4 5 5 6 9 4 5 5 6 1 2 3 4 5 5 6 7

worst case running time complexity $\Theta(n^2)$.

Randomized Quick-sort algorithm

Randomized!

making the algorithm randomized gives us more control over the running time!

Algorithm 2: Randomized Quick-sort

```
Input: An array A[1, 2, \ldots, n]
  Output: An sorted array A[1, 2, \ldots, n]
1 [randomly choose pivot uniformly]:
<sup>2</sup> S_{\text{smaller}} \leftarrow [], S_{\text{larger}} \leftarrow [];
for i = 1, \ldots, n do
   if A[i] \leq pivot then
    S_{\text{smaller append}}(A[i]);
    end
      else S_{\text{larger.append}}(A[i]);
8 end
9 return [Quicksort(S_{smaller}), pivot, Quicksort(S_{larger})];
```

Worst-case expected-time bound

- $\qquad \qquad \textbf{ the worst case: } T(n) = \max_{\text{inputs } I \text{ of size } n} T(I)$
- $\label{eq:the average case:} T(n) = \underset{\text{inputs } I \text{ of size } n}{\operatorname{avg}} T(I)$

Worst-case expected-time bound

- $\qquad \qquad \textbf{ the worst case: } T(n) = \max_{\text{inputs } I \text{ of size } n} T(I)$
- $\label{eq:the_transform} \blacktriangleright \text{ the average case: } T(n) = \underset{\text{inputs } I \text{ of size } n}{\operatorname{avg}} T(I)$

Remark: 1) Merge-sort has both worst-case and average-case time $\Theta(n \log n)$, independent of the input.

2) for some algorithms, the running time depends on the input, e.g., Quick-sort.

Worst-case expected-time bound

- $\qquad \qquad \textbf{ the worst case: } T(n) = \max_{\text{inputs } I \text{ of size } n} T(I)$
- $\label{eq:the the average case:} T(n) = \underset{\text{inputs } I \text{ of size } n}{\operatorname{avg}} T(I)$

Remark: 1) Merge-sort has both worst-case and average-case time $\Theta(n \log n)$, independent of the input.

2) for some algorithms, the running time depends on the input, e.g., Quick-sort.

Target: Worst-case expected-time bound

We will prove that, for **any** given input array I of n elements, the expected time of randomized quick-sort $\mathbb{E}[T(I)]$ is $\mathcal{O}(n \log n)$.

► This is worst-case expected-time bound, better than the average case w.r.t the requirement on the inputs

Analysis via Recurrence

Theorem (Recall: total expectation theorem)

Given a probability space $(\Omega, \mathcal{F}, \Pr)$, consider a partition $\{B_j\}_{j=1}^n$ of Ω , then the expectation of a random variable X can be represented as

$$\mathbb{E}(X) = \sum_{j=1}^{n} \mathbb{E}(X|B_j) \Pr(B_j)$$

Analysis via Recurrence

Theorem (Recall: total expectation theorem)

Given a probability space $(\Omega, \mathcal{F}, \Pr)$, consider a partition $\{B_j\}_{j=1}^n$ of Ω , then the expectation of a random variable X can be represented as

$$\mathbb{E}(X) = \sum_{j=1}^{n} \mathbb{E}(X|B_j) \Pr(B_j)$$

- \triangleright Given an array A of size n, let C_n be the number of comparisons needed for A
- $ightharpoonup C_n$ is a random variable

Analysis via Recurrence

Theorem (Recall: total expectation theorem)

Given a probability space $(\Omega, \mathcal{F}, \Pr)$, consider a partition $\{B_j\}_{j=1}^n$ of Ω , then the expectation of a random variable X can be represented as

$$\mathbb{E}(X) = \sum_{j=1}^{n} \mathbb{E}(X|B_j) \Pr(B_j)$$

- \triangleright Given an array A of size n, let C_n be the number of comparisons needed for A
- $ightharpoonup C_n$ is a random variable
- event B_j : choose the j-th smallest value of A (i.e., rank j) as the pivot
- $\Pr(B_j) = 1/n$

$$M_n := \mathbb{E}(C_n) = \sum_{j=1}^n \mathbb{E}(C_n|B_j)\Pr(B_j)$$

event B_j : the selected pivot is the j-th smallest value

ightharpoonup we take n-1 comparisons for split

event B_j : the selected pivot is the j-th smallest value

- lacktriangle we take n-1 comparisons for split
- \blacktriangleright the set $A_{\rm left}^j$ of values smaller than it has size j-1
- lacktriangle the set $A_{
 m right}^j$ of values greater has size n-j

event B_j : the selected pivot is the j-th smallest value

- ightharpoonup we take n-1 comparisons for split
- \blacktriangleright the set $A_{\rm left}^j$ of values smaller than it has size j-1
- lacktriangle the set A_{right}^j of values greater has size n-j

Given event B_j , the needed comparisons are $n-1+C_{j-1}+C_{n-j}$

event B_j : the selected pivot is the j-th smallest value

- ightharpoonup we take n-1 comparisons for split
- lacktriangle the set A_{left}^j of values smaller than it has size j-1
- ▶ the set A_{right}^{j} of values greater has size n-j

Given event B_j , the needed comparisons are $n-1+C_{j-1}+C_{n-j}$

$$M_n := \mathbb{E}(C_n) = \sum_{j=1}^n \mathbb{E}(C_n|B_j)\Pr(B_j)$$
$$= \sum_{j=1}^n (n-1+M_{j-1}+M_{n-j})\frac{1}{n}$$
$$= n-1+\frac{2}{n}\sum_{j=1}^{n-1} M_j.$$

Results

Theorem

 $M_n = \mathcal{O}(n \log n)$

Proof.

(Guess and) Verify by induction.¹

¹https://www.cl.cam.ac.uk/teaching/1920/Probablty/materials/Lecture5.pdf for details.

Results

Theorem

 $M_n = \mathcal{O}(n \log n)$

Proof.

(Guess and) Verify by induction.¹

In the next...

Slick analysis of QuickSort

¹https://www.cl.cam.ac.uk/teaching/1920/Probablty/materials/Lecture5.pdf for details.

Property of deterministic/randomized quick-sort

2 3 4 5 5 6 7

- the pivot is compared with every element in the array exactly once.
- the pivot will be excluded from the recursive calls

property

- a) If two elements are compared, then one of them is pivot.
- \blacktriangleright b) If two elements belong to $S_{\mbox{smaller}}$ and $S_{\mbox{larger}},$ they will be never compared.
- c) Any two fixed elements are compared at most once!
 - because of a) and b)

Theoretical results

Theorem

Given an array $A = \{a_1, a_2, \cdots, a_n\}$ with size n, denote Z as the number of comparisons for randomized quick-sort, then $\mathbb{E}[Z] \leq 2n \log n$.

Theoretical results

Theorem

Given an array $A = \{a_1, a_2, \cdots, a_n\}$ with size n, denote Z as the number of comparisons for randomized quick-sort, then $\mathbb{E}[Z] \leq 2n \log n$.

- ▶ For $i, j \in [n]$ with $i \neq j$, event R_{ij} denotes the element a_i is compared with a_j
- $lacktriangledown X_{ij}$ is an indicator random variable for R_{ij}

$$X_{ij} = \begin{cases} 1 & \text{if } a_i, a_j \text{ are compared} \\ 0 & \text{otherwise.} \end{cases}$$

then we have $Z = \sum_{i < j} X_{ij}$ [using property c)]. This is equivalent to:

Theoretical results

Theorem

Given an array $A = \{a_1, a_2, \cdots, a_n\}$ with size n, denote Z as the number of comparisons for randomized quick-sort, then $\mathbb{E}[Z] \leq 2n \log n$.

- ▶ For $i, j \in [n]$ with $i \neq j$, event R_{ij} denotes the element a_i is compared with a_j
- lacktriangledown X_{ij} is an indicator random variable for R_{ij}

$$X_{ij} = \begin{cases} 1 & \text{if } a_i, a_j \text{ are compared} \\ 0 & \text{otherwise.} \end{cases}$$

then we have $Z=\sum_{i< j} X_{ij}$ [using property c)]. This is equivalent to: Let $A^*=\{a_1^*,a_2^*,\cdots,a_n^*\}$ be the correctly sorted list. Denote a random variable Y_{ij} with $i,j\in [n]$ as

$$Y_{ij} = \begin{cases} 1 & \text{if } a_i^*, a_j^* \text{ are compared} \\ 0 & \text{otherwise.} \end{cases}$$

then we have $Z = \sum_{i < j} Y_{ij}$ [using property c)].

To determine when a_i^* and a_j^* are compared, we need to ensure

To determine when a_i^* and a_i^* are compared, we need to ensure

• either a_i^* or a_i^* to be chosen as a pivot [property a)]

To determine when a_i^* and a_j^* are compared, we need to ensure

- ightharpoonup either a_i^* or a_j^* to be chosen as a pivot [property a)]
- ▶ We cannot choose any of $\{a_{i+1}^*, \cdots, a_{j-1}^*\}$ as pivot. Otherwise a_i^* and a_j^* are split into two different sets, and will never be compared. [property b)]

To determine when a_i^* and a_j^* are compared, we need to ensure

- ightharpoonup either a_i^* or a_j^* to be chosen as a pivot [property a)]
- We cannot choose any of $\{a_{i+1}^*, \cdots, a_{j-1}^*\}$ as pivot. Otherwise a_i^* and a_j^* are split into two different sets, and will never be compared. [property b)]

That means, we are doing a **dart game** over $\{a_i^*, a_{i+1}^*, \cdots, a_{j-1}^*, a_j^*\}$ (if beyond this set, we throw another dart): we throw a dart at random into the array

To determine when a_i^* and a_j^* are compared, we need to ensure

- ightharpoonup either a_i^* or a_j^* to be chosen as a pivot [property a)]
- $lackbox{ We cannot choose any of } \{a^*_{i+1},\cdots,a^*_{j-1}\}$ as pivot. Otherwise a^*_i and a^*_j are split into two different sets, and will never be compared. [property b)]

That means, we are doing a **dart game** over $\{a_i^*, a_{i+1}^*, \cdots, a_{j-1}^*, a_j^*\}$ (if beyond this set, we throw another dart): we throw a dart at random into the array

- ightharpoonup if we hit a_i^* or a_j^* , then $Y_{ij}=1$
- ightharpoonup if we hit $a_{i+1}^*, \cdots, a_{j-1}^*$, then $Y_{ij} = 0$

To determine when a_i^* and a_j^* are compared, we need to ensure

- ightharpoonup either a_i^* or a_j^* to be chosen as a pivot [property a)]
- We cannot choose any of $\{a_{i+1}^*, \cdots, a_{j-1}^*\}$ as pivot. Otherwise a_i^* and a_j^* are split into two different sets, and will never be compared. [property b)]

That means, we are doing a **dart game** over $\{a_i^*, a_{i+1}^*, \cdots, a_{j-1}^*, a_j^*\}$ (if beyond this set, we throw another dart): we throw a dart at random into the array

- ightharpoonup if we hit a_i^* or a_j^* , then $Y_{ij}=1$
- ightharpoonup if we hit $a_{i+1}^*, \cdots, a_{j-1}^*$, then $Y_{ij} = 0$

Accordingly, we have

$$\Pr(Y_{ij} = 1) = \frac{1}{j - i + 1} + \frac{1}{j - i + 1} = \frac{2}{j - i + 1},$$

and $\mathbb{E}(Y_{ij}) = \Pr(Y_{ij} = 1)$.

Results

$$\mathbb{E}[Z] = \sum_{i \le j} \mathbb{E}[Y_{ij}] = 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1} = 2 \sum_{i=1}^{n-1} \frac{n-i}{i+1} = 2 \sum_{k=2}^{n} \frac{n}{k} - 2 \sum_{i=1}^{n-1} \frac{i}{i+1}$$

where we observe

if
$$i = 1$$
, $\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-2} + \frac{1}{n-1} + \frac{1}{n}$
if $i = 2$, $\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-2} + \frac{1}{n-1}$
if $i = 3$, $\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-2}$

. . .

if
$$i = n - 1, \frac{1}{2}$$

where we use $\sum_{i=1}^{n-1} \frac{i}{i+1} \geq \frac{n-1}{2}$.

Results

$$\mathbb{E}[Z] = \sum_{i < j} \mathbb{E}[Y_{ij}] = 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1} = 2\sum_{i=1}^{n-1} \frac{n-i}{i+1} = 2\sum_{k=2}^{n} \frac{n}{k} - 2\sum_{i=1}^{n-1} \frac{i}{i+1}$$

Recall the definition of harmonic numbers,

$$H_n = \sum_{k=1}^n \frac{1}{k} = \Theta(\log n) = \log n + \gamma + \frac{1}{2n} + \mathcal{O}(\frac{1}{n^2}).$$

Then we have

$$\mathbb{E}[Z] \le 2\left(\sum_{k=1}^{n} \frac{n}{k} - \frac{n-1}{2}\right) \le 2n\log n,$$

where we use $\sum_{i=1}^{n-1} \frac{i}{i+1} \geq \frac{n-1}{2}$.

Numerical validations²

- ▶ setting (left and middle): 1000 arrays with size 1000, run 50 times.
- setting (right): a fixed reverse-sorted input array with size 1000

Figure: Distribution of run-time of deterministic Quick-sort over random array inputs.

Figure: Distribution of run-time of randomized Quick-sort over random array inputs.

²figure credit: https://balaramdb.com/2021/08/analysis-of-randomized-quicksort/

Numerical validations²

- ▶ setting (left and middle): 1000 arrays with size 1000, run 50 times.
- setting (right): a fixed reverse-sorted input array with size 1000

Figure: Distribution of run-time of deterministic Quick-sort over random array inputs.

Figure: Distribution of run-time of randomized Quick-sort over random array inputs.

Figure: Distribution of run-time of randomized Quick-sort over a fixed reverse-sorted input array. Deterministic quick-sort takes 499,500 comparisons.

²figure credit: https://balaramdb.com/2021/08/analysis-of-randomized-quicksort/

Comparison of sorting algorithms

check more details if you're interested in

https://en.wikipedia.org/wiki/Sorting_algorithm

Algorithm	Best case	Average case	Worst case	Stable
Bubble-sort	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$	√
Merge-sort	$\mathcal{O}(n \log n)$	$\mathcal{O}(n \log n)$	$\mathcal{O}(n \log n)$	√
Quick-sort (deterministic)	$\mathcal{O}(n \log n)$	$\mathcal{O}(n \log n)$	$\mathcal{O}(n^2)$	X
Quick-sort (randomized)	$\mathcal{O}(n \log n)$	$\mathcal{O}(n \log n)$	$\mathcal{O}(n^2)$	X

Remark: the worst-case expected-time complexity for randomized quick-sort is $\mathcal{O}(n \log n)$.

o stable: sort equal elements in the same order that they appear in the input

Thanks for your attention!

Q & A

my homepage www.lfhsgre.org for more information!

(a) $y_i = f_{\rho}(x_i) + \epsilon$

(a) under-fitting

Figure: Test performance on curve fitting: source from Open Al.