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Recall Markov inequality...

Statement
Given a non-negative random variable X, if its expectation exists, then

Pr(X ≥ t) ≤ EX

t
.

Theorem (Relationship between expectation and tail)
Let X be a non-negative (discrete) random variable taking values in {0, 1, 2, · · · }, if its
expectation exists, then

E(X) =
∞∑

i=0
Pr(X > i) .
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Example: expectation of Geometric distribution (proof by tail)
X ∼ Geo(p) with the PMF

Pr(X = k) = (1 − p)k−1p ∀k ≥ 1 .

Statement
The expected value of a Geometric random variable is E(X) = 1/p.

Proof.
Using the integral identity and q := 1 − p, we have

E(X) =
∞∑

i=0
Pr(X > i) =

∞∑
i=1

Pr(X ≥ i) =
∞∑

i=1

∞∑
k=i

(1 − p)k−1p := p

∞∑
i=1

∞∑
k=i

qk−1

= p
∞∑

i=1

qi−1

1 − q
=

∞∑
i=1

qi−1 = 1
1 − q

= 1
p

.

□
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Recall Variance...

Definition
The variance of a random variable X is defined as

V(X) = E(X − EX)2 = EX2 − [EX]2 .

Property
▶ V(aX) = a2V(X) for a constant a.
▶ If X, Y are independent, we have V(aX + bY ) = a2V(X) + b2V(Y ).
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Example: Variance of Geometric distribution
X ∼ Geo(p) with the probability mass function

Pr(X = k) = (1 − p)k−1p ∀k ≥ 1 .

Statement
The variance of a Geometric random variable is V(X) = 1−p

p2 .

Proof.
We know that E(X) = 1/p and V[X] = EX2 − (EX)2, then we only need to know

E(X2) =
∞∑

k=1
k2(1 − p)k−1p = p

∞∑
k=1

k2qk−1 = p

∞∑
k=1

(kqk)′ taking q := 1 − p

= p

( ∞∑
k=1

kqk

)′

= p

(
q

(1 − q)2

)′

= 2 − p

p2 .

[S :=
∑∞

k=1 kqk, using S − qS = ...] □
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Chebyshev’s inequality

Theorem (Chebyshev’s inequality)
For a random variable X with its expectation µ and variance σ2, then

Pr[|X − µ| ≥ t] ≤ σ2

t2 .

Proof.

Pr[|X − µ| ≥ t] = Pr[|X − µ|2 ≥ t2] ≤ E[|X − µ|2]
t2 = σ2

t2 .

□
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More information, better result

▶ Markov inequality: only use µ, convergence rate: O(1/t)
▶ Chebyshev’s inequality: use µ, σ2, convergence rate: O(1/t2)

More general version: If we introduce a non-decreasing, non-negative function ϕ, then

Pr(|X − µ| ≥ t) = Pr[ϕ(|X − µ|) ≥ ϕ(t)] ≤ E[ϕ(X)]
ϕ(t)

Moment (if exists and finite) by choosing ϕ as a polynomial function:
▶ 1st order moment: E[X]
▶ 2nd order moment: E[X2], E[|X − EX|2]

...
▶ t-th order moment: E[Xt], E[|X − EX|t]

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 7/ 13



More information, better result

▶ Markov inequality: only use µ, convergence rate: O(1/t)
▶ Chebyshev’s inequality: use µ, σ2, convergence rate: O(1/t2)

More general version: If we introduce a non-decreasing, non-negative function ϕ, then

Pr(|X − µ| ≥ t) = Pr[ϕ(|X − µ|) ≥ ϕ(t)] ≤ E[ϕ(X)]
ϕ(t)

Moment (if exists and finite) by choosing ϕ as a polynomial function:
▶ 1st order moment: E[X]
▶ 2nd order moment: E[X2], E[|X − EX|2]

...
▶ t-th order moment: E[Xt], E[|X − EX|t]

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 7/ 13



More information, better result

▶ Markov inequality: only use µ, convergence rate: O(1/t)
▶ Chebyshev’s inequality: use µ, σ2, convergence rate: O(1/t2)

More general version: If we introduce a non-decreasing, non-negative function ϕ, then

Pr(|X − µ| ≥ t) = Pr[ϕ(|X − µ|) ≥ ϕ(t)] ≤ E[ϕ(X)]
ϕ(t)

Moment (if exists and finite) by choosing ϕ as a polynomial function:
▶ 1st order moment: E[X]
▶ 2nd order moment: E[X2], E[|X − EX|2]

...
▶ t-th order moment: E[Xt], E[|X − EX|t]

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 7/ 13



Application of Chebyshev’s inequality to Coupon collector’s problem

Problem (Recall Coupon collector’s problem)
We randomly and uniformly sample one object from {1, 2, · · · , n}, T is the number of draws
before the every {1, 2, · · · , n} is seen, we have E(T ) = nHn.

Now we plan to estimate the tail by Chebyshev’s inequality.

Problem (Tail probability)
For coupon collector’s problem, what is the probability of the event that the numbers we draw
is larger than N?

Pr(T ≥ N) ≤?
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Solution

Solution
▶ Ti: measures the number of independent trials to collect the ith unique coupon.

▶ Ti ∼ Geo(pi) with pi = n−i+1
n .

▶ Recall Geometric distribution: E(X) = 1/p and V(X) = 1−p
p2 .

▶ E(Ti) = n
n−i+1 and V(Ti) = n(i−1)

(n−i+1)2

▶ Ti and Tj are independent (each trial is independent)
We estimate the variance of T by the independence of {Ti}n

i=1
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Continue

Solution (To be continued)

V[T ] = V[
n∑

i=1
Ti] =

n∑
i=1
V(Ti) =

n∑
i=1

n(i − 1)
(n − i + 1)2

= 0 + n

(n − 1)2 + · · · + n(i − 1)
(n − i + 1)2 + · · · + n(n − 1)

12

= n

(
0 + 1

(n − 1)2 + 2
(n − 2)2 + · · · + i − 1

(n − i + 1)2 + · · · + n − 1
12

)
≤ n2

n∑
i=1

1
i2 = n2π2

6 .
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Another way

V[T ] = n

(
0 + 1

(n − 1)2 + 2
(n − 2)2 + · · · + i − 1

(n − i + 1)2 + · · · + n − 1
12

)
≤ n

(
1

(n − 1)(n − 2) + 2
(n − 2)(n − 3) + 3

(n − 3)(n − 4) + · · · + n − 2
2 × 1 + n − 1

12

)
= n

([
1

n − 2 − 1
n − 1

]
+2
[

1
n − 3 − 1

n − 2

]
+3
[

1
n − 4 − 1

n − 3

]
+· · ·+(n − 2)

[
1
1 − 1

2

]
+ n − 1

1

)
≤ n

(
− 1

n − 1 − 1
n − 2 − 1

n − 3 − · · · − 1
2 + (n − 2) + (n − 1)

)
= n (−(Hn − 1 − 1/n) + 2n − 3) .

Similarly, we have the lower bound (using 1
n2 ≥ 1

n(n+1) )

V[T ] ≥ n (−(Hn − 1) + n − 1) .
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Continue
By Chebyshev’s inequality, we have

Pr(|T − E(T )| ≥ t) ≤ V(X)
t2 ≤ n2π2

6t2 .

That means,
Pr(T ≥ t + E(T )) ≤ Pr(|T − E(T )| ≥ t) ≤ n2π2

6t2 .

Recall E(T ) = nHn, we have

Pr(T ≥ t + nHn) ≤ Pr(|T − nHn| ≥ t) ≤ n2π2

6t2 .

Taking t := (β − 1)nHn with β > 1, we have

Pr(T ≥ βnHn) ≤ π2

6(β − 1)2H2
n

≤ π2

6(β − 1)2 log2 n
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Can we do it better?

Pr(T ≥ N) ≤ small

◦ strictly speaking, it should be T ≥ N + 1...
◦ that means, at least one of n distinct objects has not been selected in the first N round.

▶ Let AN
i denote when item i is not observed in the first N draws, i.e., Pr(AN

i ) = (1 − 1
n )N .

▶ the event {T ≥ N} = ∪n
i=1AN

i

Pr(not done in the first N draws) = Pr(∪n
i=1AN

i ) ≤
n∑

i=1
Pr(AN

i ) =
n∑

i=1
(1− 1

n
)N = n(1− 1

n
)N .

Taking N := βn log n, we have (using 1 + x ≤ ex for any x ∈ R)

n(1 − 1
n

)N ≤ n(e− 1
n )βn log n = ne−β log n = n(elog n)−β = n−β+1 .

⇒ Pr(T ≥ N) ≤ n−β+1.
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*Application in ML theory: tail and union bound [LXMZ21]
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*Application in ML theory: Markov inequality [LXMZ21]
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