Discrete Mathematics and Its Applications 2
(CS147)

Lecture 14: Chebyshev’s inequality and application

Fanghui Liu

Department of Computer Science, University of Warwick, UK

Disaring .
WARWICK [ ) COMPUTER SCIENCE l:m

THE UNIVERSITY OF WARWICK



Recall Markov inequality...

Statement

Given a non-negative random variable X, if its expectation exists, then

EX
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Recall Markov inequality...

Statement

Given a non-negative random variable X, if its expectation exists, then

EX

Theorem (Relationship between expectation and tail)

Let X be a non-negative (discrete) random variable taking values in {0, 1,2, - --

expectation exists, then

E(X) = iPr(X > i) .
1=0
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Example: expectation of Geometric distribution (proof by tail)
X ~ Geo(p) with the PMF
Pr(X =k =(1-p*1p Vk>1.

Statement

The expected value of a Geometric random variable is E(X) = 1/p.

Proof.
Using the integral identity and ¢ := 1 — p, we have

X):iPr(X>z ZPrX>z = i ) lp :zpiiqkfl
3 i=1
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Recall Variance...

Definition

The variance of a random variable X is defined as

V(X) =E(X —EX)? =EX? — [EX]?.
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Recall Variance...

Definition

The variance of a random variable X is defined as

V(X) =E(X —EX)? =EX? — [EX]?.

Property

> V(aX) = a?V(X) for a constant a.
> If X,Y are independent, we have V(aX +bY) = a®’V(X) + b>V(Y).
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Example: Variance of Geometric distribution
X ~ Geo(p) with the probability mass function
Pr(X=k)=(1-pF'p VE>1.

Statement
_1-p

The variance of a Geometric random variable is V(X) = 5.
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Example: Variance of Geometric distribution
X ~ Geo(p) with the probability mass function
Pr(X=k)=(1-pF'p VE>1.

Statement
The variance of a Geometric random variable is V(X) = 11)_2” :
Proof.

We know that E(X) = 1/p and V[X] = EX? — (EX)?, then we only need to know

E(X2) — Zkz(l _p)k—lp :kaEqk—l :pZ(qu)/ taking ¢ := 1 —p
k=1 k=1 k=1

:p<§qu>':p((qu)2>’: 7

[S =372, kg, using S — ¢S = ..]]
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Chebyshev’s inequality

Theorem (Chebyshev's inequality)
For a random variable X with its expectation j. and variance o2, then

o2

PellX — pl 2 < 7
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Chebyshev’s inequality

Theorem (Chebyshev's inequality)
For a random variable X with its expectation j. and variance o2, then

o2

PrflX — pl 2 < 2

Proof.

E[|X — pf?]
Pr[|X — p| > t] = Pr[|X — N‘z 2 tz] < - 2
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More information, better result

> Markov inequality: only use p, convergence rate: O(1/t)
> Chebyshev’s inequality: use u, 02, convergence rate: O(1/t%)
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More information, better result

> Markov inequality: only use p, convergence rate: O(1/t)
> Chebyshev’s inequality: use u, 02, convergence rate: O(1/t%)

More general version: If we introduce a non-decreasing, non-negative function ¢, then

Pr(|X — | > 1) = Prlg(|1X — pl) = ()] < —o =
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More information, better result

> Markov inequality: only use p, convergence rate: O(1/t)
> Chebyshev’s inequality: use u, 02, convergence rate: O(1/t%)

More general version: If we introduce a non-decreasing, non-negative function ¢, then
Pr(|X —pu[ > t) = Pr(¢(|X — p|) > ¢(t)] < ——==

Moment (if exists and finite) by choosing ¢ as a polynomial function:
> 1st order moment: E[X]
> 2nd order moment: E[X?], E[|X —EX|?]

> {-th order moment: E[X!], E[|X — EX|']

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 7/ 13



Application of Chebyshev’s inequality to Coupon collector’s problem

Problem (Recall Coupon collector's problem)

We randomly and uniformly sample one object from {1,2,--- ,n}, T is the number of draws
before the every {1,2,--- ,n} is seen, we have E(T) = nH,,.
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Application of Chebyshev’s inequality to Coupon collector’s problem

Problem (Recall Coupon collector’s problem)

We randomly and uniformly sample one object from {1,2,--- ,n}, T is the number of draws
before the every {1,2,--- ,n} is seen, we have E(T) = nH,,.

Now we plan to estimate the tail by Chebyshev's inequality.

Problem (Tail probability)

For coupon collector’s problem, what is the probability of the event that the numbers we draw
is larger than N7
Pr(T > N) <?
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Solution

Solution

» T;: measures the number of independent trials to collect the ith unique coupon.
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Solution

Solution

» T;: measures the number of independent trials to collect the ith unique coupon.
> T, ~ Geo(pi) with p; = n—Tz—i-l
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Solution

Solution
» T;: measures the number of independent trials to collect the ith unique coupon.
> T, ~ Geo(pi) with p; = n—Tz—i-l

> Recall Geometric distribution: E(X) = 1/p and V(X) = 117_2” :
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Solution

Solution
» T;: measures the number of independent trials to collect the ith unique coupon.
> T, ~ Geo(pi) with p; = n—TH-l

» Recall Geometric distribution: B(X) = 1/p and V(X) = 117_2” .

> B(T}) = ;2% and V(T}) = s
> T; and T are independent (each trial is independent)

We estimate the variance of T' by the independence of {T;}
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Continue

Solution (To be continued)

V[T]=V])_Ti] = ZV(E) =3 (nn£i¢_+1i)2
n n(lfl) ”(nfl)
_0+(n—1)2+“ (n—i+1)2+ (&
—n(0+ R S— e
B (n—1)2  (n—2)2 (n—i+1)2
9 "1 n?n?
=5 Z:i? G
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Another way

2 i—1 n—1
=n(0+ bt s+

(n—1)2 (7172)2 (n—i+1)2 12
2 3 n—2 n—l)

IN

(
”( =1 n—2 T o om=3 Tm-sm-0 Ttz
(

(-

=N

{”_2 ”‘JH{”L”ni2}+3{ni4ni3}+m+(nQ)Eﬂﬂf)
n—1 n-— 2_ni3_"'_;+(n—2)+(n—1))

n(—(H,—1—1/n)42n—3) .

IN

n
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Another way

2 i—1 n—1
=n(0+ o

(n—1)2 (7172)2 (n—i+1)2 12
2 3 n—2 n—l)

IN

1=
”( =1 n—2 T o om=3 Tm-sm-0 Ttz
(

(-

=N

{”_2 ”‘JH{”L”ni2}+3{ni4ni3}+m+(nQ)Eﬂﬂf)
n—1 n-— 2_ni3_"'_;+(n—2)+(n—1))

n(—(H,—1—1/n)42n—3) .

IN

n

Similarly, we have the lower bound (using ;i > ;rviy)

VIT] > n(—(Hy, —1)+n—1).
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Continue
By Chebyshev's inequality, we have

V(X) _ n?r?
Pr(T —B(T)| 2 ) <~ < "
That means,
n2m?
Pr(T > t +E(T)) < Pr(IT —E(T)| > 1) < 3
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Continue
By Chebyshev's inequality, we have

V(X) _ n?r?
Pr(T —E(T)| > 1) < L) < BT
That means,
n2m2
Pr(T > t+E(T)) < Pr(IT —E(T)| > 1) < ——5
Recall E(T) = nH,,, we have
n’n?
Pr(T >t+nH,) <Pr([T —nH,| >1t) < Y

Taking t := (8 — 1)nH,, with 8 > 1, we have
2 2

T
6(8—1)2H2 = 6(3 —1)2log*n

Pr(T > fnH,) <
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Can we do it better?

Pr(T > N) < small

o strictly speaking, it should be T"> N +1...
o that means, at least one of n distinct objects has not been selected in the first N round.
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Can we do it better?

Pr(T > N) < small
o strictly speaking, it should be T"> N +1...
o that means, at least one of n distinct objects has not been selected in the first N round.
> Let AV denote when item i is not observed in the first N draws, i.e., Pr(AY) = (1— )V,
> the event {T'> N} = U AN
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Can we do it better?

Pr(T > N) < small

o strictly speaking, it should be T"> N +1...
o that means, at least one of n distinct objects has not been selected in the first N round.

> Let AV denote when item i is not observed in the first N draws, i.e., Pr(AY) = (1— )V,
> the event {T'> N} = U AN

Pr(not done in the first N draws) = Pr(U, AN) < ZPr(AZN) = Z(l—%)N = n(l—l)N.
i=1
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Can we do it better?

Pr(T > N) < small

o strictly speaking, it should be T"> N +1...
o that means, at least one of n distinct objects has not been selected in the first N round.

> Let AV denote when item i is not observed in the first N draws, i.e., Pr(AY) = (1— )V,
> the event {T'> N} = U AN

. , " = 1 1
Pr(not done in the first N draws) = Pr(U, AN) < ;Pr(AZN) = Z(l_ﬁ)N =n(1-—)N.
Taking N := fnlogn, we have (using 1 +a < e* for any z € R)

n(l _ 7)N < n(efi)ﬂnlogn — peBlogn _ n(elogn)fﬁ — p Bt

n =
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Can we do it better?

Pr(T > N) < small

o strictly speaking, it should be T"> N +1...
o that means, at least one of n distinct objects has not been selected in the first N round.

> Let AV denote when item i is not observed in the first N draws, i.e., Pr(AY) = (1— )V,
> the event {T'> N} = U AN

Pr(not done in the first N draws) = Pr(U, AN) < ZPr(AZN) = Z(l—%)N = n(l—l)N.
i=1

Taking N := fnlogn, we have (using 1 +a < e* for any z € R)

n(l _ l)N < n(efi)ﬂnlogn _ nefﬁlogn _ n(elogn)fﬁ _ ﬂ7ﬂ+1 )
n

= Pr(T > N) < n=A+L
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*Application in ML theory: tail and union bound [LXMZ21]

Lemma 9 (bounds of initial parameters). Given § € (0,1), we have with probability at least
1— & over the choice of 8°

max {[af], [lwflleo} < 4/2l0g

ke[m]

2m(d+ 1)
T 2

Proof If X ~ N(0,1), then P(|X| > ¢) < 22" for all € > 0. Since a) ~ N(0,1),
(wg)a ~N(0,1) for k=1,2,...,m, a =1,...,d and they are all independent, by setting

2 1
€= QIng,

one can obtain

0 0 —
P (e {la, e} > ¢) =P (,_max {1l b l} > )

(L_J laf| >€) | <a:1 ()] >e)))

C:..

m m d

<Y P(la) > ) ZZ (Il >€)
k=1 —la=

< 2me~ 3¢ + 2mde ’% 2

= 2m(d + 1)e 3=
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*Application in ML theory: Markov inequality [LXMZ21]

Then

e) - Gl 6(0))|
i,j=1
g , " ,
< Z <4max{ }E]E|Dk”\+6max{ﬁ,1}5p)
< i “in“’d Z <4 max { } £28d max{x’, 1}¢p + 6 max {% 1} §2p>

< k%K'dn? (32d§ max{x’, W} + 6 max {%, 1}) &p
3/2
8m(d6+ 1)) max{

1
< 40K2d?n? (2 log K2, E}p

By Markov’s inequality, with probability at least 1 — §/2 over the choice of 87,
we have

I (8(t)) — G™1(6(0))||r
<3 [elew) - de)|

3,j=1

3/2
o 1 } 40K2d?n? (2 log 787"(?*'1)) D
P

Sma.x{rz 6/2
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