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Definition of conditional expectation

▶ similar notation: from conditional probability to conditional expectation

The simplest version of conditional expectation is conditioned on a single event A.

Definition (Conditional expectation over an event)
For a discrete random variable X and an event A, the conditional expectation is

E(X|A) =
∑

i

xiPr({ω : X(ω) = xi}|A) .

Information!
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Example: conditional expectation over an event

Example
A dice is repeatedly thrown until it lands on a 6. Let T be the number of rolls it takes for a dice
to roll a 6, and let A be the event that all dice rolls in a sequence are even. What is E(T |A)?

What is E(T )?

⇒ Geometric distribution: Pr(T = k) = (1 − p)k−1p, ∀k ≥ 1 with p = 1/6.

Solution
We know the information the sequence are even, i.e., 2, 4, 6.
E(T |A) ⇔ find the expected number of throws until the result is 6.
⇒ p = 1/3
⇒ E(T |A) = 1/p = 3.
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Conditioning on a random variable

◦ E(X|A) is a value (A is an event)
◦ E(X|Y ): the expected value of X conditioned on Y is itself a random variable
- when Y = y, it takes E(X|Y = y)

Informal understanding
▶ E(X): average - the best estimate of a X given no information about it
▶ E(X|Y ): we have already known the information from Y , how to give a good estimation

for X? a function of Y that best approximates X

Property
▶ E(X|X) = X

▶ E(X|Y ) = E(X) if X, Y are independent.
▶ E(aX + bY |Z) = aE(X|Z) + bE(Y |Z) for two constants a, b.
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Law of total expectation

Theorem
E[E[X|Y ]] = E[X]

Proof.

E[E[X|Y ]] =
∑

y

E[X|Y = y]Pr(Y = y)

=
∑

y

(∑
x

xPr(X = x|Y = y)
)

Pr(Y = y)

=
∑

y

∑
x

xPr(X = x, Y = y)

=
∑

x

x
∑

y

Pr(X = x, Y = y) =
∑

x

xPr(X = x) .

□

total expectation theorem
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Examples (I)

Example
Let X and Y be the values of independent six-sides dies. What is E(X|X + Y )?

Intuition: we know the information of X + Y and want to estimate X.
▶ E(X + Y |X + Y ) = X + Y

▶ E(X + Y |X + Y ) = E(X|X + Y ) + E(Y |X + Y ) = 2E(X|X + Y ) by symmetry
Then we have E(X|X + Y ) = (X + Y )/2. □
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Examples (II)

Example
We roll two standard 6-sided dice, let X1 and X2 be the numbers we obtain and
X = X1 + X2. Compute E[X1|X = 8].

Solution

E[X1|X = 8] =
6∑

i=1
iPr(X1 = i|X = 8) =

6∑
i=2

iPr(X1 = i|X = 8) ,

where X1 , 1 for the condition X = X1 + X2 = 8. Otherwise X2 = 7, which is unrealistic.

Then, the event {X1 = i|X = 8} for any i ∈ {2, 3, 4, 5, 6} is an equal-probability event, so

E[X1|X = 8] =
6∑

i=1
iPr(X1 = i|X = 8) =

6∑
i=2

iPr(X1 = i|X = 8) = 1
5 (2 + 3 + 4 + 5 + 6) = 4 .
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Coupon collector’s problem

Problem
We repeatedly sample from a set of N distinct objects until at least one copy of each distinct
object is obtained. Denote T as the number of draws until the every {1, 2, · · · , N} is seen,
what is E(T )?

Recall Geometric distribution:
▶ Fails in the first n − 1 times

Pr(X = n) = (1 − p)n−1 p

▶ Success at the n-th time
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Illustration

▶ Sample a new object: ✓

▶ Sample a repeated object: ✗

⇒ success to sample a new object before previous (repeated) objects
⇒ the first occurrence of success for a new object

example with 5 coupons: [3] [1] [3] [5] [5] [3] [1] [1] [3] [2] [3] [2] [2] [4]
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Solution
▶ Pr(find the first unique coupon) = N

N = 1
▶ Pr(find the second unique coupon) = N−1

N

▶ Pr(find the n-th unique coupon) = N−(n−1)
N

Solution
Let xn as how many times we need to collect the n-th unique coupon after collecting
(n − 1)-th unique coupons.
⇒ xn ∼ Geo(pn).
⇒ pn = N−n+1

N .

E(T ) = E(
N∑

n=1
xn) =

N∑
n=1
E(xn) = N

N
+ N

N − 1 + . . . + N

1

= N(1 + 1
2 + . . . + 1

N
) = NHN ≈ N(log N + γ) .
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Next lecture...

Tail probability: We wish to create an upper bound R such that T exceed R with a low
probability

Pr(T ≥ R) ≤ small .
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