Discrete Mathematics and Its Applications 2 (CS147)

Lecture 12: Conditional expectation, coupon collector's problem

Fanghui Liu

Department of Computer Science, University of Warwick, UK

similar notation: from conditional probability to conditional expectation

similar notation: from conditional probability to conditional expectation The simplest version of conditional expectation is conditioned on a single event A.

similar notation: from conditional probability to conditional expectation
 The simplest version of conditional expectation is conditioned on a single event A.

Definition (Conditional expectation over an event)

For a discrete random variable X and an event A, the conditional expectation is

$$\mathbb{E}(X|A) = \sum_{i} x_i \Pr(\{\omega : X(\omega) = x_i\}|A).$$

similar notation: from conditional probability to conditional expectation
 The simplest version of conditional expectation is conditioned on a single event A.

Definition (Conditional expectation over an event)

For a discrete random variable X and an event A, the conditional expectation is

$$\mathbb{E}(X|A) = \sum_{i} x_i \Pr(\{\omega : X(\omega) = x_i\}|A).$$

Information!

Example: conditional expectation over an event

Example

A dice is repeatedly thrown until it lands on a 6. Let T be the number of rolls it takes for a dice to roll a 6, and let A be the event that all dice rolls in a sequence are even. What is $\mathbb{E}(T|A)$?

Example: conditional expectation over an event

Example

A dice is repeatedly thrown until it lands on a 6. Let T be the number of rolls it takes for a dice to roll a 6, and let A be the event that all dice rolls in a sequence are even. What is $\mathbb{E}(T|A)$?

What is $\mathbb{E}(T)$?

 $\Rightarrow \text{Geometric distribution: } \Pr(T=k) = (1-p)^{k-1}p, \forall k \geq 1 \text{ with } p = 1/6.$

Example: conditional expectation over an event

Example

A dice is repeatedly thrown until it lands on a 6. Let T be the number of rolls it takes for a dice to roll a 6, and let A be the event that all dice rolls in a sequence are even. What is $\mathbb{E}(T|A)$?

What is $\mathbb{E}(T)$?

$$\Rightarrow$$
 Geometric distribution: $\Pr(T = k) = (1 - p)^{k-1}p, \forall k \ge 1$ with $p = 1/6$.

Solution

We know the information the sequence are even, i.e., 2, 4, 6. $\mathbb{E}(T|A) \Leftrightarrow \text{ find the expected number of throws until the result is 6.}$ $\Rightarrow p = 1/3$ $\Rightarrow \mathbb{E}(T|A) = 1/p = 3.$

Conditioning on a random variable

 $\circ \mathbb{E}(X|A)$ is a value (A is an event) $\circ \mathbb{E}(X|Y)$: the expected value of X conditioned on Y is itself a random variable - when Y = y, it takes $\mathbb{E}(X|Y = y)$

Conditioning on a random variable

 $\circ \mathbb{E}(X|A)$ is a value (A is an event) $\circ \mathbb{E}(X|Y)$: the expected value of X conditioned on Y is itself a random variable - when Y = y, it takes $\mathbb{E}(X|Y = y)$

Informal understanding

- $\blacktriangleright\ E(X):$ average the best estimate of a X given no information about it
- $\mathbb{E}(X|Y)$: we have already known the information from Y, how to give a good estimation for X? a function of Y that best approximates X

Conditioning on a random variable

 $\circ \mathbb{E}(X|A)$ is a value (A is an event) $\circ \mathbb{E}(X|Y)$: the expected value of X conditioned on Y is itself a random variable - when Y = y, it takes $\mathbb{E}(X|Y = y)$

Informal understanding

- \blacktriangleright E(X): average the best estimate of a X given no information about it
- $\mathbb{E}(X|Y)$: we have already known the information from Y, how to give a good estimation for X? a function of Y that best approximates X

Property

- $\blacktriangleright \ \mathbb{E}(X|X) = X$
- $\mathbb{E}(X|Y) = \mathbb{E}(X)$ if X, Y are independent.
- $\mathbb{E}(aX + bY|Z) = a\mathbb{E}(X|Z) + b\mathbb{E}(Y|Z)$ for two constants a, b.

Law of total expectation

Theorem $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$

Law of total expectation

Theorem

 $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$

Proof.

$$B[\mathbb{E}[X|Y]] = \sum_{y} \mathbb{E}[X|Y = y] \Pr(Y = y)$$

$$= \sum_{y} \left(\sum_{x} x \Pr(X = x|Y = y) \right) \Pr(Y = y)$$

$$= \sum_{y} \sum_{x} x \Pr(X = x, Y = y)$$

$$= \sum_{x} x \sum_{y} \Pr(X = x, Y = y) = \sum_{x} x \Pr(X = x)$$

total expectation theorem

Examples (I)

Example

Let X and Y be the values of independent six-sides dies. What is $\mathbb{E}(X|X+Y)$?

Examples (I)

Example

Let X and Y be the values of independent six-sides dies. What is $\mathbb{E}(X|X+Y)$?

Intuition: we know the information of X + Y and want to estimate X.

►
$$\mathbb{E}(X + Y|X + Y) = X + Y$$

► $\mathbb{E}(X + Y|X + Y) = \mathbb{E}(X|X + Y) + \mathbb{E}(Y|X + Y) = 2\mathbb{E}(X|X + Y)$ by symmetry
Then we have $\mathbb{E}(X|X + Y) = (X + Y)/2$.

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 6/ 11

Examples (II)

Example

We roll two standard 6-sided dice, let X_1 and X_2 be the numbers we obtain and $X = X_1 + X_2$. Compute $\mathbb{E}[X_1|X = 8]$.

Solution

$$\mathbb{E}[X_1|X=8] = \sum_{i=1}^{6} i \Pr(X_1=i|X=8) = \sum_{i=2}^{6} i \Pr(X_1=i|X=8),$$

where $X_1 \neq 1$ for the condition $X = X_1 + X_2 = 8$. Otherwise $X_2 = 7$, which is unrealistic.

Examples (II)

Example

We roll two standard 6-sided dice, let X_1 and X_2 be the numbers we obtain and $X = X_1 + X_2$. Compute $\mathbb{E}[X_1|X = 8]$.

Solution

$$\mathbb{E}[X_1|X=8] = \sum_{i=1}^{6} i \Pr(X_1=i|X=8) = \sum_{i=2}^{6} i \Pr(X_1=i|X=8),$$

where $X_1 \neq 1$ for the condition $X = X_1 + X_2 = 8$. Otherwise $X_2 = 7$, which is unrealistic. Then, the event $\{X_1 = i | X = 8\}$ for any $i \in \{2, 3, 4, 5, 6\}$ is an equal-probability event, so

$$\mathbb{E}[X_1|X=8] = \sum_{i=1}^{6} i \Pr(X_1=i|X=8) = \sum_{i=2}^{6} i \Pr(X_1=i|X=8) = \frac{1}{5} \left(2+3+4+5+6\right) = 4.$$

Coupon collector's problem

Problem

We repeatedly sample from a set of N distinct objects until at least one copy of each distinct object is obtained. Denote T as the number of draws until the every $\{1, 2, \dots, N\}$ is seen, what is $\mathbb{E}(T)$?

Coupon collector's problem

Problem

We repeatedly sample from a set of N distinct objects until at least one copy of each distinct object is obtained. Denote T as the number of draws until the every $\{1, 2, \dots, N\}$ is seen, what is $\mathbb{E}(T)$?

Recall Geometric distribution:

• Fails in the first n-1 times

$$\Pr(X = n) = (1 - p)^{n-1} p$$

Success at the *n*-th time

Illustration

- Sample a new object:
- Sample a repeated object: X
- \Rightarrow success to sample a new object before previous (repeated) objects
- \Rightarrow the first occurrence of success for a new object

example with 5 coupons: [3] [1] [3] [5] [5] [3] [1] [1] [3] [2] [3] [2] [2] [4]

Illustration

- Sample a new object:
- Sample a repeated object: X
- \Rightarrow success to sample a new object before previous (repeated) objects
- \Rightarrow the first occurrence of success for a new object

example with 5 coupons: [3] [1] [3] [5] [5] [3] [1] [1] [3] [2] [3] [2] [2] [4]

Solution

- $\blacktriangleright~\Pr({\rm find~the~first~unique~coupon}) = \frac{N}{N} = 1$
- $\Pr(\text{find the second unique coupon}) = \frac{N-1}{N}$

•
$$\Pr(\text{find the } n\text{-th unique coupon}) = \frac{N - (n-1)}{N}$$

Solution

- ▶ $\Pr(\text{find the first unique coupon}) = \frac{N}{N} = 1$
- $\Pr(\text{find the second unique coupon}) = \frac{N-1}{N}$
- $\Pr(\text{find the } n\text{-th unique coupon}) = \frac{N (n-1)}{N}$

Solution

Let x_n as how many times we need to collect the *n*-th unique coupon after collecting (n-1)-th unique coupons. $\Rightarrow x_n \sim \text{Geo}(p_n).$ $\Rightarrow p_n = \frac{N-n+1}{N}.$

$$\mathbb{E}(T) = \mathbb{E}(\sum_{n=1}^{N} x_n) = \sum_{n=1}^{N} \mathbb{E}(x_n) = \frac{N}{N} + \frac{N}{N-1} + \dots + \frac{N}{1}$$
$$= N(1 + \frac{1}{2} + \dots + \frac{1}{N}) = NH_N \approx N(\log N + \gamma).$$

Next lecture...

Tail probability: We wish to create an upper bound R such that $T \mbox{ exceed } R$ with a low probability

 $\Pr(T \ge R) \le small$.