Discrete Mathematics and Its Applications 2 (CS147)

Lecture 12: Conditional expectation, coupon collector's problem

Fanghui Liu

Department of Computer Science, University of Warwick, UK

Definition of conditional expectation

- similar notation: from conditional probability to conditional expectation

Definition of conditional expectation

- similar notation: from conditional probability to conditional expectation

The simplest version of conditional expectation is conditioned on a single event A.

Definition of conditional expectation

- similar notation: from conditional probability to conditional expectation

The simplest version of conditional expectation is conditioned on a single event A.

Definition (Conditional expectation over an event)

For a discrete random variable X and an event A, the conditional expectation is

$$
\mathbb{E}(X \mid A)=\sum_{i} x_{i} \operatorname{Pr}\left(\left\{\omega: X(\omega)=x_{i}\right\} \mid A\right)
$$

Definition of conditional expectation

- similar notation: from conditional probability to conditional expectation

The simplest version of conditional expectation is conditioned on a single event A.

Definition (Conditional expectation over an event)

For a discrete random variable X and an event A, the conditional expectation is

$$
\mathbb{E}(X \mid A)=\sum_{i} x_{i} \operatorname{Pr}\left(\left\{\omega: X(\omega)=x_{i}\right\} \mid A\right)
$$

Information!

Example: conditional expectation over an event

Example

A dice is repeatedly thrown until it lands on a 6 . Let T be the number of rolls it takes for a dice to roll a 6 , and let A be the event that all dice rolls in a sequence are even. What is $\mathbb{E}(T \mid A)$?

Example: conditional expectation over an event

Example

A dice is repeatedly thrown until it lands on a 6 . Let T be the number of rolls it takes for a dice to roll a 6 , and let A be the event that all dice rolls in a sequence are even. What is $\mathbb{E}(T \mid A)$?

What is $\mathbb{E}(T)$?
\Rightarrow Geometric distribution: $\operatorname{Pr}(T=k)=(1-p)^{k-1} p, \forall k \geq 1$ with $p=1 / 6$.

Example: conditional expectation over an event

Example

A dice is repeatedly thrown until it lands on a 6 . Let T be the number of rolls it takes for a dice to roll a 6 , and let A be the event that all dice rolls in a sequence are even. What is $\mathbb{E}(T \mid A)$?

What is $\mathbb{E}(T)$?
\Rightarrow Geometric distribution: $\operatorname{Pr}(T=k)=(1-p)^{k-1} p, \forall k \geq 1$ with $p=1 / 6$.

Solution

We know the information the sequence are even, i.e., $2,4,6$.
$\mathbb{E}(T \mid A) \Leftrightarrow$ find the expected number of throws until the result is 6 .
$\Rightarrow p=1 / 3$
$\Rightarrow \mathbb{E}(T \mid A)=1 / p=3$.

Conditioning on a random variable

- $\mathbb{E}(X \mid A)$ is a value (A is an event)
- $\mathbb{E}(X \mid Y)$: the expected value of X conditioned on Y is itself a random variable
- when $Y=y$, it takes $\mathbb{E}(X \mid Y=y)$

Conditioning on a random variable

- $\mathbb{E}(X \mid A)$ is a value (A is an event)
- $\mathbb{E}(X \mid Y)$: the expected value of X conditioned on Y is itself a random variable
- when $Y=y$, it takes $\mathbb{E}(X \mid Y=y)$

Informal understanding

- $E(X)$: average - the best estimate of a X given no information about it
- $\mathbb{E}(X \mid Y)$: we have already known the information from Y, how to give a good estimation for X ? a function of Y that best approximates X

Conditioning on a random variable

- $\mathbb{E}(X \mid A)$ is a value (A is an event)
- $\mathbb{E}(X \mid Y)$: the expected value of X conditioned on Y is itself a random variable
- when $Y=y$, it takes $\mathbb{E}(X \mid Y=y)$

Informal understanding

- $E(X)$: average - the best estimate of a X given no information about it
- $\mathbb{E}(X \mid Y)$: we have already known the information from Y, how to give a good estimation for X ? a function of Y that best approximates X

Property

- $\mathbb{E}(X \mid X)=X$
- $\mathbb{E}(X \mid Y)=\mathbb{E}(X)$ if X, Y are independent.
- $\mathbb{E}(a X+b Y \mid Z)=a \mathbb{E}(X \mid Z)+b \mathbb{E}(Y \mid Z)$ for two constants a, b.

Law of total expectation

Theorem
$\mathbb{E}[\mathbb{E}[X \mid Y]]=\mathbb{E}[X]$

Law of total expectation

Theorem
$\mathbb{E}[\mathbb{E}[X \mid Y]]=\mathbb{E}[X]$

Proof.

$$
\begin{aligned}
\mathbb{E}[\mathbb{E}[X \mid Y]] & =\sum_{y} \mathbb{E}[X \mid Y=y] \operatorname{Pr}(Y=y) \\
& =\sum_{y}\left(\sum_{x} x \operatorname{Pr}(X=x \mid Y=y)\right) \operatorname{Pr}(Y=y) \\
& =\sum_{y} \sum_{x} x \operatorname{Pr}(X=x, Y=y) \\
& =\sum_{x} x \sum_{y} \operatorname{Pr}(X=x, Y=y)=\sum_{x} x \operatorname{Pr}(X=x) .
\end{aligned}
$$

total expectation theorem

Examples (1)

Example

Let X and Y be the values of independent six-sides dies. What is $\mathbb{E}(X \mid X+Y)$?

Examples (1)

Example

Let X and Y be the values of independent six-sides dies. What is $\mathbb{E}(X \mid X+Y)$?
Intuition: we know the information of $X+Y$ and want to estimate X.

- $\mathbb{E}(X+Y \mid X+Y)=X+Y$
- $\mathbb{E}(X+Y \mid X+Y)=\mathbb{E}(X \mid X+Y)+\mathbb{E}(Y \mid X+Y)=2 \mathbb{E}(X \mid X+Y)$ by symmetry

Then we have $\mathbb{E}(X \mid X+Y)=(X+Y) / 2$.

Examples (II)

Example

We roll two standard 6 -sided dice, let X_{1} and X_{2} be the numbers we obtain and $X=X_{1}+X_{2}$. Compute $\mathbb{E}\left[X_{1} \mid X=8\right]$.

Solution

$$
\mathbb{E}\left[X_{1} \mid X=8\right]=\sum_{i=1}^{6} i \operatorname{Pr}\left(X_{1}=i \mid X=8\right)=\sum_{i=2}^{6} i \operatorname{Pr}\left(X_{1}=i \mid X=8\right),
$$

where $X_{1} \neq 1$ for the condition $X=X_{1}+X_{2}=8$. Otherwise $X_{2}=7$, which is unrealistic.

Examples (II)

Example

We roll two standard 6 -sided dice, let X_{1} and X_{2} be the numbers we obtain and $X=X_{1}+X_{2}$. Compute $\mathbb{E}\left[X_{1} \mid X=8\right]$.

Solution

$$
\mathbb{E}\left[X_{1} \mid X=8\right]=\sum_{i=1}^{6} i \operatorname{Pr}\left(X_{1}=i \mid X=8\right)=\sum_{i=2}^{6} i \operatorname{Pr}\left(X_{1}=i \mid X=8\right),
$$

where $X_{1} \neq 1$ for the condition $X=X_{1}+X_{2}=8$. Otherwise $X_{2}=7$, which is unrealistic.
Then, the event $\left\{X_{1}=i \mid X=8\right\}$ for any $i \in\{2,3,4,5,6\}$ is an equal-probability event, so
$\mathbb{E}\left[X_{1} \mid X=8\right]=\sum_{i=1}^{6} i \operatorname{Pr}\left(X_{1}=i \mid X=8\right)=\sum_{i=2}^{6} i \operatorname{Pr}\left(X_{1}=i \mid X=8\right)=\frac{1}{5}(2+3+4+5+6)=4$.

Coupon collector's problem

Problem

We repeatedly sample from a set of N distinct objects until at least one copy of each distinct object is obtained. Denote T as the number of draws until the every $\{1,2, \cdots, N\}$ is seen, what is $\mathbb{E}(T)$?

Coupon collector's problem

Problem

We repeatedly sample from a set of N distinct objects until at least one copy of each distinct object is obtained. Denote T as the number of draws until the every $\{1,2, \cdots, N\}$ is seen, what is $\mathbb{E}(T)$?

Recall Geometric distribution:

- Fails in the first $n-1$ times

$$
\operatorname{Pr}(X=n)=(1-p)^{n-1} p
$$

- Success at the n-th time

Illustration

- Sample a new object: \downarrow
- Sample a repeated object: \boldsymbol{X}
\Rightarrow success to sample a new object before previous (repeated) objects
\Rightarrow the first occurrence of success for a new object
example with 5 coupons: [3] [1] [3] [5] [5] [3] [1] [1] [3] [2] [3] [2] [2] [4]

Illustration

- Sample a new object: \downarrow
- Sample a repeated object: \boldsymbol{X}
\Rightarrow success to sample a new object before previous (repeated) objects
\Rightarrow the first occurrence of success for a new object
example with 5 coupons: [3] [1] [3] [5] [5] [3] [1] [1] [3] [2] [3] [2] [2] [4]

Solution

- $\operatorname{Pr}($ find the first unique coupon $)=\frac{N}{N}=1$
- Pr (find the second unique coupon) $=\frac{N-1}{N}$
- $\operatorname{Pr}($ find the n-th unique coupon $)=\frac{N-(n-1)}{N}$

Solution

- $\operatorname{Pr}($ find the first unique coupon $)=\frac{N}{N}=1$
- $\operatorname{Pr}($ find the second unique coupon $)=\frac{N-1}{N}$
- $\operatorname{Pr}($ find the n-th unique coupon $)=\frac{N-(n-1)}{N}$

Solution

Let x_{n} as how many times we need to collect the n-th unique coupon after collecting ($n-1$)-th unique coupons.
$\Rightarrow x_{n} \sim \operatorname{Geo}\left(p_{n}\right)$.
$\Rightarrow p_{n}=\frac{N-n+1}{N}$.

$$
\begin{aligned}
\mathbb{E}(T) & =\mathbb{E}\left(\sum_{n=1}^{N} x_{n}\right)=\sum_{n=1}^{N} \mathbb{E}\left(x_{n}\right)=\frac{N}{N}+\frac{N}{N-1}+\ldots+\frac{N}{1} \\
& =N\left(1+\frac{1}{2}+\ldots+\frac{1}{N}\right)=N H_{N} \approx N(\log N+\gamma) .
\end{aligned}
$$

Next lecture...

Tail probability: We wish to create an upper bound R such that T exceed R with a low probability

$$
\operatorname{Pr}(T \geq R) \leq \text { small }
$$

