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Definition of conditional expectation

> similar notation: from conditional probability to conditional expectation
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> similar notation: from conditional probability to conditional expectation

The simplest version of conditional expectation is conditioned on a single event A.
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Definition of conditional expectation

> similar notation: from conditional probability to conditional expectation

The simplest version of conditional expectation is conditioned on a single event A.

Definition (Conditional expectation over an event)

For a discrete random variable X and an event A, the conditional expectation is

E(X|A) = Zx Pr({w: X(w) =a;}|A).
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Definition of conditional expectation

> similar notation: from conditional probability to conditional expectation

The simplest version of conditional expectation is conditioned on a single event A.

Definition (Conditional expectation over an event)

For a discrete random variable X and an event A, the conditional expectation is

E(X|A) = Zx Pr({w: X(w) =a;}|A).

Information!
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Example: conditional expectation over an event

Example

A dice is repeatedly thrown until it lands on a 6. Let T" be the number of rolls it takes for a dice
to roll a 6, and let A be the event that all dice rolls in a sequence are even. What is E(T'|A)?
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Example: conditional expectation over an event

Example

A dice is repeatedly thrown until it lands on a 6. Let T" be the number of rolls it takes for a dice
to roll a 6, and let A be the event that all dice rolls in a sequence are even. What is E(T'|A)?

What is E(T)?

= Geometric distribution: Pr(T = k) = (1 — p)*~!p,Vk > 1 with p = 1/6.
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Example: conditional expectation over an event

Example

A dice is repeatedly thrown until it lands on a 6. Let T" be the number of rolls it takes for a dice
to roll a 6, and let A be the event that all dice rolls in a sequence are even. What is E(T'|A)?
What is E(T)?

= Geometric distribution: Pr(T = k) = (1 — p)*~!p,Vk > 1 with p = 1/6.

Solution

We know the information the sequence are even, i.e., 2,4,6.
E(T'|A) < find the expected number of throws until the result is 6.
=p=1/3

= E(T|A)=1/p=3.
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Conditioning on a random variable

o E(X]A) is a value (A is an event)
o E(X]Y): the expected value of X conditioned on Y is itself a random variable

- when Y =y, it takes E(X|Y = y)
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Conditioning on a random variable

o E(X]A) is a value (A is an event)
o E(X]Y): the expected value of X conditioned on Y is itself a random variable

- when Y =y, it takes E(X|Y = y)
Informal understanding

> E(X): average - the best estimate of a X given no information about it

> E(X|Y): we have already known the information from Y, how to give a good estimation
for X7 a function of Y that best approximates X

YY.. CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 4/ 11



Conditioning on a random variable

o E(X]A) is a value (A is an event)
o E(X]Y): the expected value of X conditioned on Y is itself a random variable
- when Y =y, it takes E(X|Y = y)

Informal understanding

> E(X): average - the best estimate of a X given no information about it

> E(X|Y): we have already known the information from Y, how to give a good estimation
for X7 a function of Y that best approximates X
Property

» E(X|X)=X
> E(X|Y)=E(X) if X,Y are independent.
> E(aX +bY|Z) = aE(X|Z) + bE(Y|Z) for two constants a, b.
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Law of total expectation

Theorem
E[E[X|Y]] = E[X]
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Law of total expectation

Theorem
E[E[X|Y]] = E[X]

Proof.

BIELX|Y]) = S EB[X|Y = ylPx(Y =y)

=> (Z Pr(X = z|Y = y)) Pr(Y =y)
=> 3 aPr(X =z,Y =y)

:ZxZPr(X:m,Y:y) :ZmPr(X:

vy
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total expectation theorem

E[X|Y =y

{ py (y)

O



Examples (1)

Example
Let X and Y be the values of independent six-sides dies. What is E(X|X +Y)?
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Examples (1)

Example
Let X and Y be the values of independent six-sides dies. What is E(X|X +Y)?

Intuition: we know the information of X + Y and want to estimate X.
»EX+Y|X+Y)=X+Y
» E(X+Y|X+Y)=EX|X+Y)+EY|X+Y)=2E(X|X +Y) by symmetry
Then we have E(X|X +Y) = (X +Y)/2.
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Examples (1)

Example

We roll two standard 6-sided dice, let X; and X5 be the numbers we obtain and
X = X1 + X5. Compute E[X;|X = 8].

Solution

6 6
B[X1|X =8 =) iPr(X; =i|X =8) =) iPr(X; =i|X =8),

i=1 =2

where X1 # 1 for the condition X = X1 + X9 = 8. Otherwise Xy = 7, which is unrealistic.
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Examples (1)

Example

We roll two standard 6-sided dice, let X; and X5 be the numbers we obtain and
X = X1 + X5. Compute E[X;|X = 8].

Solution

6 6
B[X1|X =8 =) iPr(X; =i|X =8) =) iPr(X; =i|X =8),
i=1 i=2
where X1 # 1 for the condition X = X1 + X9 = 8. Otherwise Xy = 7, which is unrealistic.
Then, the event {X, = i|X = 8} for any i € {2,3,4,5,6} is an equal-probability event, so

[=2]

6
) . . 1
E[X |X =8] = g iPr(X; =X =8) = E ZPr(Xl:z|X:8):5(2+3+4+5+6):4.

=1 =2
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Coupon collector’s problem

Problem

We repeatedly sample from a set of N distinct objects until at least one copy of each distinct
object is obtained. Denote T as the number of draws until the every {1,2,--- N} is seen,
what is E(T')?
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Coupon collector’s problem

Problem

We repeatedly sample from a set of N distinct objects until at least one copy of each distinct
object is obtained. Denote T as the number of draws until the every {1,2,--- N} is seen,
what is E(T')?

Recall Geometric distribution:
» Fails in the first n — 1 times

» Success at the n-th time

vy
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lHlustration

> Sample a new object: v/
> Sample a repeated object: X

= success to sample a new object before previous (repeated) objects
= the first occurrence of success for a new object

example with 5 coupons: [3] [1] [3] [5] [5] [3] [11 [1]1 [3] [2] [3] [2] [2] [4]
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lHlustration

> Sample a new object: v/
> Sample a repeated object: X

= success to sample a new object before previous (repeated) objects
= the first occurrence of success for a new object

example with 5 coupons: [3] [1] [3] [5] [5] [3]1 [1]1 [11 [3] [2] [3] [2] [2] [4]

X X

n+l

/—'nﬂ/—'ﬁ

t t t

vl CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 9/ 11



Solution

> Pr(find the first unique coupon) = & =1

» Pr(find the second unique coupon) = %
> Pr(find the n-th unique coupon) = w
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Solution

> Pr(find the first unique coupon) = & =1

> Pr(find the second unique coupon) = %
> Pr(find the n-th unique coupon) = Nﬁ(N"*U

Solution

Let x,, as how many times we need to collect the n-th unique coupon after collecting
(n — 1)-th unique coupons.

= x, ~ Geo(py,).

= pp = N7$+y

N N N
B(I) =EQ)_en) =) Blan) = g+y—g++7
n=1 n=1
1
:N(1+§+ + —)=NHy = N(logN +7).
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Next lecture...

Tail probability: We wish to create an upper bound R such that T exceed R with a low
probability
Pr(T > R) < small .
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