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Logistics: coursework1

Enrollment
▶ some students from Math (around 70) are not enrolled
▶ reach out the UG support in your department for enrollment

Submission for your coursework 1
▶ submit either on Tabula or on Moodle,

but not both
If you submit on both platforms, then the
submission made on Tabula will be the only
one that is marked.
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Expectation: weighted average

Definition (Expectation)
Let X be the discrete random variable with probability mass function fX(x), then the
expectation of X is

E(X) =
∑

x

xfX(x) =
∑

x

xPr(X = x) .

Remark:
▶ summation over all values of {X = x} that have non-zero probability.
▶ for continuous r.v., E(X) =

∫∞
−∞ xfX(x)dx.
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Expectation of a function

▶ Imagine observing X many times (N times) to give results x1, x2, · · · , xN

▶ apply a function g to each of observations g(x1), g(x2), · · · , g(xN )

Statement
If X is a discrete random variable and its probability mass function fX(x), then the expected
value of g(X) is given by

E[g(X)] =
∑

x

g(x)fX(x) .

Remark: for the indicator r.v. X, it has the same PMF/expectation with X2 (or higher
moments)
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Property of expectation

Property (Expectation)
▶ For an event A, E1A = Pr(A).
▶ |E(X)| ≤ E(|X|).
▶ E(aX + bY ) = aE(X) + bE(Y ) with two constants a, b.

E(1A) =
1∑

x=0
xPr(1A = x) = 0 × Pr(1A = 0) + 1 × Pr(1A = 1) = Pr(1A = 1) = Pr(A) .

Linearity of expectation simplifies the expectation computation!

◦ flip a fair coin n times...
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Application (I): Card shuffling

Problem
Suppose we unwrap a fresh deck of cards and shuffle it until the cards are completely random.
How many cards do we expect to be in the same position as they were at the start?

X: the number of cards that end in the same position as they started.

Problem (Equivalent problem)
Choose a random permutation π, i.e., a random bijection from {1, 2, . . . , n} to itself. What is
the expectation number of value i for which π(i) = i?

Solution
Denote X :=

∑n
i=1 Xi, where Xi be the indicator variable for the event that π(i) = i.

Accordingly, Pr(Xi = 1) = 1/n and thus E(Xi) = 1/n. By the linearity of expectation, we
have E(X) =

∑n
i=1 EXi = 1.
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Application (II): Infinite Monkey Theorem

infinite time! Shakespeare’s work!
The infinite monkey theorem states that a monkey hitting keys at random on a
typewriter keyboard for an infinite amount of time will almost surely type any given
text, including the complete works of William Shakespeare.
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Application (II): Infinite Monkey Theorem

Problem (Infinite Monkey Theorem)
Suppose that a monkey types on a 26-letter keyboard that has lowercase only. Each letter is
chosen independently and uniformly at random from the alphabet. If the monkey types 1000
letters, what is the expected number of times the sequence "proof" appears?

Solution
The sample space Ω = {a, b, c, d, . . . , z}1000, define a random variable Xi as follow: for every
ω ∈ Ω and i ∈ {1, 2, . . . , 996}

Xi(ω) =
{

1 if (ωi, ωi+1, ωi+2, ωi+3, ωi+4) = (p, r, o, o, f)
0 otherwise.

consider a random variable Y : Ω → R, Y (ω) =
∑996

i=1 Xi(ω) for any ω ∈ Ω.
⇒ E(Y ) =

∑996
i=1 E(Xi) =

∑996
i=1 Pr({ω : Xi(ω) = 1}) = 996 × 1

265 ≈ 8.4 × 10−5.
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Example: Geometric distribution
X ∼ Geo(p) with the probability mass function:

Pr(X = k) = (1 − p)k−1p ∀k ≥ 1 .

Geometric distribution
If a system/algorithm fails (or succeeds) at each time step with probability p, then the
expected number of steps up to the first failure (respectively, first success) is 1/p.

E(X) =
∞∑

k=1
k(1 − p)k−1p = p

∞∑
k=1

k(1 − p)k−1 = p
∞∑

k=1

d(1 − p)k

d(1 − p)

= p
d
(∑∞

k=1(1 − p)k
)

d(1 − p) = p
d
(

1−p
p

)
−1 = −p × (−1/p2) = 1/p .
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Relationship between expectation and tail

Theorem
Let X be a non-negative discrete random variable, if its expectation exists, then

E(X) =
∞∑

i=0
Pr(X > i) .

Proof.

∑
i≥0

Pr(X > i) =
∑
i≥0

∑
j≥i+1

Pr(X = j) =
∑
i≥1

i · Pr(X = i) =
∑
i≥0

i · Pr(X = i) = E(X).

□
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Expectation of a product

Theorem
If X, Y is independent, we have E(XY ) = E(X)E(Y ).

Proof.

E(X)E(Y ) =
(∑

i

xiPr(X = xi)
)∑

j

xjPr(Y = yj)

 =
∑
i,j

xiyjPr(X = xi)Pr(Y = yj)

=
∑

k

zk

 ∑
i,j,xiyj=zk

Pr(X = xi)Pr(Y = yj)


=
∑

k

zk

 ∑
i,j,xiyj=zk

Pr(X = xi ∧ Y = yj)

 =
∑

k

zkPr(XY = zk) = E[XY ] .

□
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Variance

Definition
The variance of a random variable X is defined as

V(X) = E(X − EX)2 = EX2 − [EX]2 .

Property
▶ V(aX) = a2V(X) for a constant a.
▶ If X, Y are independent, we have V(aX + bY ) = a2V(X) + b2V(Y ).
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Example: Variance of Geometric distribution
X ∼ Geo(p) with the probability mass function

Pr(X = k) = (1 − p)k−1p ∀k ≥ 1 .

Statement
The variance of a Geometric random variable is V(X) = 1−p

p2 .

Proof.
We know that E(X) = 1/p and V[X] = EX2 − (EX)2, then we only need to know

E(X2) =
∞∑

k=1
k2(1 − p)k−1p = p

∞∑
k=1

k2qk−1 = p

∞∑
k=1

(kqk)′ taking q := 1 − p

= p

( ∞∑
k=1

kqk

)′

= p

(
q

(1 − q)2

)′

= 2 − p

p2 .

[S :=
∑∞

k=1 kqk, using S − qS = ...] □
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