# Discrete Mathematics and Its Applications 2 (CS147)

Lecture 10: Random variable, coupon collector's problem

## Fanghui Liu

### Department of Computer Science, University of Warwick, UK



## Target of discrete probability in this module...

## Problem (Coupon collector's problem)

## Target of discrete probability in this module...

## Problem (Coupon collector's problem)

- randomness, probability space
- indicator random variable
- expectation
- 🕨 tail

## Random variable

A random variable (r.v.) is any rule (i.e., function) that associates a number with each outcome in the sample space.

Definition (Random variable is a function!)

Given a probability space  $(\Omega, \mathcal{F}, \Pr)$  and a function  $X : \Omega \to \mathbb{R}$ , if for any  $a \in \mathbb{R}$ , we have  $\{\omega : X(\omega) \leq a\} \in \mathcal{F}$ , then X is a random variable.

### Random variable

A random variable (r.v.) is any rule (i.e., function) that associates a number with each outcome in the sample space.

Definition (Random variable is a function!)

Given a probability space  $(\Omega, \mathcal{F}, \Pr)$  and a function  $X : \Omega \to \mathbb{R}$ , if for any  $a \in \mathbb{R}$ , we have  $\{\omega : X(\omega) \leq a\} \in \mathcal{F}$ , then X is a random variable.



## \*Recall our example in Lecture 8...

- case 1: a transparent box (left)
- case 2: half covered by opaque cloth



sample space  $\Omega = \{Z1, Z2, Z3, Z4\}$ 

- case 1:  $\mathcal{F}_1$  : a collection of all subsets of  $\Omega$
- case 2:  $\mathcal{F}_2$  is

$$\begin{aligned} \mathcal{F}_2 &= \{\Omega, \emptyset, \{Z1\}, \{Z2, Z3, Z4\}, \\ &\{Z3\}, \{Z1, Z2, Z4\}, \{Z1, Z3\}, \{Z2, Z4\}\} \end{aligned}$$



## \*Recall our example in Lecture 8...

- case 1: a transparent box (left)
- case 2: half covered by opaque cloth



sample space  $\Omega = \{Z1, Z2, Z3, Z4\}$ 

- case 1:  $\mathcal{F}_1$  : a collection of all subsets of  $\Omega$
- case 2:  $\mathcal{F}_2$  is

$$\begin{aligned} \mathcal{F}_2 &= \{\Omega, \emptyset, \{Z1\}, \{Z2, Z3, Z4\}, \\ &\{Z3\}, \{Z1, Z2, Z4\}, \{Z1, Z3\}, \{Z2, Z4\}\} \end{aligned}$$

VARWICK CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 4/ 14

Define a function  $X:\Omega\to\mathbb{R}$  as

$$X(\omega) = \begin{cases} 1, \text{ if } \omega = Z1\\ 1.6, \text{ if } \omega = Z2\\ 4.3, \text{ if } \omega = Z3\\ 5, \text{ if } \omega = Z4 \end{cases}$$

## \*Recall our example in Lecture 8...

- case 1: a transparent box (left)
- case 2: half covered by opaque cloth



sample space  $\Omega = \{Z1, Z2, Z3, Z4\}$ 

• case 1:  $\mathcal{F}_1$  : a collection of all subsets of  $\Omega$ 

• case 2:  $\mathcal{F}_2$  is

$$\begin{split} \mathcal{F}_2 &= \{\Omega, \emptyset, \{Z1\}, \{Z2, Z3, Z4\}, \\ &\{Z3\}, \{Z1, Z2, Z4\}, \{Z1, Z3\}, \{Z2, Z4\}\} \end{split}$$

Define a function  $X:\Omega\to\mathbb{R}$  as

$$X(\omega) = \begin{cases} 1, \text{ if } \omega = Z1\\ 1.6, \text{ if } \omega = Z2\\ 4.3, \text{ if } \omega = Z3\\ 5, \text{ if } \omega = Z4 \end{cases}$$

X is a random variable w.r.t  $\mathcal{F}_1$  but not a random variable w.r.t  $\mathcal{F}_2$  because

$$\{\omega: X(\omega) \le 2\} = \{Z1, Z2\} \notin \mathcal{F}_2.$$

## Types of random variables

 $\,\circ\,$  A random variable (r.v.) can be either discrete or continuous

- discrete r.v.: has a countable number of possible values
- continuous r.v.: takes all values in an interval of numbers



In this module, we mainly consider discrete random variables

## **Indicator function**

### Definition

Let  $A \subseteq \Omega$ , define

$$1_A(\omega) = \begin{cases} 1, \text{ if } \omega \in A \\ 0, \text{ otherwise} \end{cases}$$

transform operations of sets into algebra operations!

### Statement

$$A = B \Leftrightarrow 1_A = 1_B$$
$$A \subseteq B \Leftrightarrow 1_A \le 1_B$$
$$1_{A \cap B} = \min\{1_A, 1_B\} = 1_A 1_B$$
$$1_{A \cup B} = \max\{1_A, 1_B\}$$

## **Indicator function**

#### Definition

Let  $A \subseteq \Omega$ , define

$$1_A(\omega) = \begin{cases} 1, \text{ if } \omega \in A \\ 0, \text{ otherwise} \end{cases}$$

transform operations of sets into algebra operations!

### Statement

$$A = B \Leftrightarrow 1_A = 1_B$$
$$A \subseteq B \Leftrightarrow 1_A \le 1_B$$
$$1_{A \cap B} = \min\{1_A, 1_B\} = 1_A 1_B$$
$$1_{A \cup B} = \max\{1_A, 1_B\}$$

### Example (in sorting algorithms)

For an array with size n, denote a random variable  $Y_{ij}$  with  $i,j \in [n]$  as

$$Y_{ij} = \begin{cases} 1 & \text{if } a_i, a_j \text{ are compared} \\ 0 & \text{otherwise.} \end{cases}$$

## **Probability Mass Function**

### Definition

The probability mass function (PMF) of a discrete random variable is defined as

$$f_X(a) = \Pr(X = a) = \Pr(\{\omega \in \Omega : X(\omega) = a\}).$$

**Remark:**  $\sum_{a \in X(\omega)} f_X(a) = 1.$ 

## **Probability Mass Function**

### Definition

The probability mass function (PMF) of a discrete random variable is defined as

$$f_X(a) = \Pr(X = a) = \Pr(\{\omega \in \Omega : X(\omega) = a\}).$$

**Remark:**  $\sum_{a \in X(\omega)} f_X(a) = 1.$ 

### Example

Consider a biased coin flipped with p for head, 1-p for the tail, we denote

$$\begin{array}{c|ccc} a & 1 & 0 \\ \Pr[X = a] & p & 1 - p \end{array}$$

## Distribution of a random variable

The distribution of a random variable describes the probability that it takes on various values.

## Definition (Cumulative distribution function)

For real-valued random variables, the distribution function or cumulative distribution function is a function  $F_X(a) = \Pr(X \le a)$ 

## Distribution of a random variable

The distribution of a random variable describes the probability that it takes on various values.

## Definition (Cumulative distribution function)

For real-valued random variables, the distribution function or cumulative distribution function is a function  $F_X(a) = \Pr(X \le a)$ 

**Remark:** for discrete random variables: take on only countably many possible values  $a_1, a_2, \ldots, a_n, \ldots$ 

| $X(\omega)$ | $a_1$          | $a_2$          | <br>$a_i$          |  |
|-------------|----------------|----------------|--------------------|--|
| probability | $\Pr(X = a_1)$ | $\Pr(X = a_2)$ | <br>$\Pr(X = a_i)$ |  |

## Distribution of a random variable

The distribution of a random variable describes the probability that it takes on various values.

## Definition (Cumulative distribution function)

For real-valued random variables, the distribution function or cumulative distribution function is a function  $F_X(a) = \Pr(X \le a)$ 

**Remark:** for discrete random variables: take on only countably many possible values  $a_1, a_2, \ldots, a_n, \ldots$ 

| $X(\omega)$ | $a_1$          | $a_2$          | <br>$a_i$          |  |
|-------------|----------------|----------------|--------------------|--|
| probability | $\Pr(X = a_1)$ | $\Pr(X = a_2)$ | <br>$\Pr(X = a_i)$ |  |

## Property

▶  $F(-\infty) = 0, F(\infty) = 1$  and F is non-decreasing

• 
$$\Pr(a < X \le b) = F_X(b) - F_X(a)$$

• right-continuous  $F_X(a^+) = F_X(a)$ 

## Example: typical discrete random variables

• Bernoulli distribution:  $X \sim \text{Bernoulli}(p)$  $\Pr(X = 1) = p \text{ and } \Pr(X = 0) = 1 - p.$ 

### Example: typical discrete random variables

- ▶ Bernoulli distribution:  $X \sim \text{Bernoulli}(p)$  $\Pr(X = 1) = p \text{ and } \Pr(X = 0) = 1 - p.$
- Binomial distribution: X ~ Binomial(n, p)
  Pr(X = k) = {n \choose k} p^k q^{(n-k)}, where n and p are parameters of the distribution and q = 1 p
   Experiment consists of n trials
  - $\circ$  Trials are identical and independent
  - $\circ$  Constant probability for each observation

## Example: typical discrete random variables

- ▶ Bernoulli distribution:  $X \sim \text{Bernoulli}(p)$  $\Pr(X = 1) = p \text{ and } \Pr(X = 0) = 1 - p.$
- ▶ Binomial distribution: X ~ Binomial(n, p) Pr(X = k) = <sup>n</sup><sub>k</sub>p<sup>k</sup>q<sup>(n-k)</sup>, where n and p are parameters of the distribution and q = 1 − p ∘ Experiment consists of n trials
  - Trials are identical and independent
  - $\circ$  Constant probability for each observation

## Geometric distribution

$$X \sim \mathsf{Geo}(p) : \Pr(X = k) = (1 - p)^{k - 1} p, \forall k \ge 1.$$

 $\circ$  number of tails we flip before we get the first head in a sequence of biased coin-flips.

• Fails in the first k-1 times

$$\Pr(X = k) = (1 - p)^{k - 1} p$$

Success at the *k*-th time

### Problem

#### Problem

- Sample a new object:
- Sample a repeated object: X
- $\Rightarrow$  success to sample a new object before previous (repeated) objects

#### Problem

- Sample a new object:
- Sample a repeated object: X
- $\Rightarrow$  success to sample a new object before previous (repeated) objects
  - $\Pr(\text{find the first unique coupon}) = \frac{n}{n} = 1$
  - $\Pr(\text{find the second unique coupon}) = \frac{n-1}{n}$
  - ▶  $\Pr(\text{find the } i\text{-th unique coupon}) = \frac{n-(i-1)}{n}$

### Problem

We repeatedly sample from a set of n distinct coupons until at least one copy of each distinct coupon is obtained. What is the **expected** times do we need?

- Sample a new object:
- Sample a repeated object: X
- $\Rightarrow$  success to sample a new object before previous (repeated) objects
  - ▶  $\Pr(\text{find the first unique coupon}) = \frac{n}{n} = 1$
  - $\Pr(\text{find the second unique coupon}) = \frac{n-1}{n}$
  - $\Pr(\text{find the } i\text{-th unique coupon}) = \frac{n-(i-1)}{n}$

Let  $t_i$  = times to collect the *i*-th unique coupon after collecting (i - 1)-th unique coupons.  $\Rightarrow t_i \sim \text{Geo}(\frac{n - (i-1)}{n}).$ 

## Continuous random variable

## Definition

A random variable is continuous if Pr(X = a) = 0 for any  $a \in \mathbb{R}$ .

Remark: not assign probability to points but to intervals

## Continuous random variable

## Definition

A random variable is continuous if Pr(X = a) = 0 for any  $a \in \mathbb{R}$ .

Remark: not assign probability to points but to intervals

- A probability density function (PDF)  $f_X$ :  $\Pr(a \le X \le b) = \int_a^b f_X(x) dx$ .
- A cumulative distribution function (CDF) is  $F_X(a) = \int_{-\infty}^a f_X(t) dt$ .





### Example: typical continuous random variables

► Uniform distribution over [*a*, *b*]:

$$F_X(x) = \begin{cases} 0, \text{ if } x \le a \\ (x-a)/(b-a), \text{ if } a < x < b \\ 1, \text{ if } x > b \end{cases}$$

Gaussian distribution ("most important" distribution in probability theory):

$$F_X(x) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^x e^{-\frac{(x-\mu)^2}{2\sigma^2}} \mathrm{d}x \,.$$

#### Joint distribution

Two or more (discrete) random variables can be described using a joint distribution, which can be represented as Pr[X = x, Y = y] for two random variable X and Y Marginal distribution:

$$\Pr(X = x) = \sum_{y} \Pr[X = x, Y = y]$$

#### Example

Let X and Y be six-sided dices, then  $\Pr[X=x,Y=y]=1/36$  for all values x and y in {1,2,3,4,5,6}

### **Independent Random Variables**

#### Definition

Two discrete random variables X and Y over  $(\Omega, \mathcal{F}, \Pr)$  are said to be independent if and only if for every x in the range of X and y in the range of Y

$$\Pr[(X=x) \cap (Y=y)] = \Pr(X=x) \cdot \Pr(Y=y)$$