Discrete Mathematics and Its Applications 2 (CS147)

Lecture 10: Random variable, coupon collector's problem

Fanghui Liu
Department of Computer Science, University of Warwick, UK

Target of discrete probability in this module...

Problem (Coupon collector's problem)

We repeatedly sample from a set of n distinct coupons until at least one copy of each distinct coupon is obtained. What is the expected times do we need?

Target of discrete probability in this module...

Problem (Coupon collector's problem)

We repeatedly sample from a set of n distinct coupons until at least one copy of each distinct coupon is obtained. What is the expected times do we need?

- randomness, probability space
- indicator random variable
- expectation
- tail

Random variable

A random variable (r.v.) is any rule (i.e., function) that associates a number with each outcome in the sample space.

Definition (Random variable is a function!)

Given a probability space $(\Omega, \mathcal{F}, \operatorname{Pr})$ and a function $X: \Omega \rightarrow \mathbb{R}$, if for any $a \in \mathbb{R}$, we have $\{\omega: X(\omega) \leq a\} \in \mathcal{F}$, then X is a random variable.

Random variable

A random variable (r.v.) is any rule (i.e., function) that associates a number with each outcome in the sample space.

Definition (Random variable is a function!)

Given a probability space $(\Omega, \mathcal{F}, \operatorname{Pr})$ and a function $X: \Omega \rightarrow \mathbb{R}$, if for any $a \in \mathbb{R}$, we have $\{\omega: X(\omega) \leq a\} \in \mathcal{F}$, then X is a random variable.

*Recall our example in Lecture 8...

- case 1: a transparent box (left)
- case 2: half covered by opaque cloth

Z 1	$\mathrm{Z2}$
$\mathrm{z3}$	$\mathrm{Z4}$

sample space $\Omega=\{Z 1, Z 2, Z 3, Z 4\}$

- case 1: \mathcal{F}_{1} : a collection of all subsets of Ω
- case 2: \mathcal{F}_{2} is

$$
\begin{aligned}
& \mathcal{F}_{2}=\{\Omega, \emptyset,\{Z 1\},\{Z 2, Z 3, Z 4\}, \\
& \quad\{Z 3\},\{Z 1, Z 2, Z 4\},\{Z 1, Z 3\},\{Z 2, Z 4\}\}
\end{aligned}
$$

*Recall our example in Lecture 8...

- case 1: a transparent box (left)
- case 2: half covered by opaque cloth

Z 1	$\mathrm{Z2}$
$\mathrm{z3}$	$\mathrm{Z4}$

Define a function $X: \Omega \rightarrow \mathbb{R}$ as

$$
X(\omega)=\left\{\begin{array}{l}
1, \text { if } \omega=Z 1 \\
1.6, \text { if } \omega=Z 2 \\
4.3, \text { if } \omega=Z 3 \\
5, \text { if } \omega=Z 4
\end{array}\right.
$$

sample space $\Omega=\{Z 1, Z 2, Z 3, Z 4\}$

- case 1: \mathcal{F}_{1} : a collection of all subsets of Ω
- case 2: \mathcal{F}_{2} is

$$
\begin{aligned}
& \mathcal{F}_{2}=\{\Omega, \emptyset,\{Z 1\},\{Z 2, Z 3, Z 4\}, \\
& \quad\{Z 3\},\{Z 1, Z 2, Z 4\},\{Z 1, Z 3\},\{Z 2, Z 4\}\}
\end{aligned}
$$

*Recall our example in Lecture 8...

- case 1: a transparent box (left)
- case 2: half covered by opaque cloth

Z1	Z2
Z3	Z4

sample space $\Omega=\{Z 1, Z 2, Z 3, Z 4\}$

- case 1: \mathcal{F}_{1} : a collection of all subsets of Ω
- case 2: \mathcal{F}_{2} is

$$
\begin{aligned}
& \mathcal{F}_{2}=\{\Omega, \emptyset,\{Z 1\},\{Z 2, Z 3, Z 4\} \\
& \quad\{Z 3\},\{Z 1, Z 2, Z 4\},\{Z 1, Z 3\},\{Z 2, Z 4\}\}
\end{aligned}
$$

Define a function $X: \Omega \rightarrow \mathbb{R}$ as

$$
X(\omega)=\left\{\begin{array}{l}
1, \text { if } \omega=Z 1 \\
1.6, \text { if } \omega=Z 2 \\
4.3, \text { if } \omega=Z 3 \\
5, \text { if } \omega=Z 4
\end{array}\right.
$$

X is a random variable w.r.t \mathcal{F}_{1} but not a random variable w.r.t \mathcal{F}_{2} because

$$
\{\omega: X(\omega) \leq 2\}=\{Z 1, Z 2\} \notin \mathcal{F}_{2}
$$

Types of random variables

- A random variable (r.v.) can be either discrete or continuous
- discrete r.v.: has a countable number of possible values
- continuous r.v.: takes all values in an interval of numbers

In this module, we mainly consider discrete random variables

Indicator function

Definition

Let $A \subseteq \Omega$, define

$$
1_{A}(\omega)=\left\{\begin{array}{l}
1, \text { if } \omega \in A \\
0, \text { otherwise }
\end{array}\right.
$$

transform operations of sets into algebra operations!

Statement

$$
\begin{aligned}
A=B & \Leftrightarrow 1_{A}=1_{B} \\
A \subseteq B & \Leftrightarrow 1_{A} \leq 1_{B} \\
1_{A \cap B} & =\min \left\{1_{A}, 1_{B}\right\}=1_{A} 1_{B} \\
1_{A \cup B} & =\max \left\{1_{A}, 1_{B}\right\}
\end{aligned}
$$

Indicator function

Definition

Let $A \subseteq \Omega$, define

$$
1_{A}(\omega)=\left\{\begin{array}{l}
1, \text { if } \omega \in A \\
0, \text { otherwise }
\end{array}\right.
$$

transform operations of sets into algebra operations!

Statement

$$
\begin{aligned}
A=B & \Leftrightarrow 1_{A}=1_{B} \\
A \subseteq B & \Leftrightarrow 1_{A} \leq 1_{B} \\
1_{A \cap B} & =\min \left\{1_{A}, 1_{B}\right\}=1_{A} 1_{B} \\
1_{A \cup B} & =\max \left\{1_{A}, 1_{B}\right\}
\end{aligned}
$$

Example (in sorting algorithms)

For an array with size n, denote a random variable $Y_{i j}$ with $i, j \in[n]$ as

$$
Y_{i j}=\left\{\begin{array}{cc}
1 & \text { if } a_{i}, a_{j} \text { are compared } \\
0 & \text { otherwise } .
\end{array}\right.
$$

Probability Mass Function

Definition

The probability mass function (PMF) of a discrete random variable is defined as

$$
f_{X}(a)=\operatorname{Pr}(X=a)=\operatorname{Pr}(\{\omega \in \Omega: X(\omega)=a\}) .
$$

Remark: $\sum_{a \in X(\omega)} f_{X}(a)=1$.

Probability Mass Function

Definition

The probability mass function (PMF) of a discrete random variable is defined as

$$
f_{X}(a)=\operatorname{Pr}(X=a)=\operatorname{Pr}(\{\omega \in \Omega: X(\omega)=a\}) .
$$

Remark: $\sum_{a \in X(\omega)} f_{X}(a)=1$.

Example

Consider a biased coin flipped with p for head, $1-p$ for the tail, we denote

a	1	0
$\operatorname{Pr}[X=a]$	p	$1-p$

Distribution of a random variable

The distribution of a random variable describes the probability that it takes on various values.

Definition (Cumulative distribution function)

For real-valued random variables, the distribution function or cumulative distribution function is a function $F_{X}(a)=\operatorname{Pr}(X \leq a)$

Distribution of a random variable

The distribution of a random variable describes the probability that it takes on various values.

Definition (Cumulative distribution function)

For real-valued random variables, the distribution function or cumulative distribution function is a function $F_{X}(a)=\operatorname{Pr}(X \leq a)$

Remark: for discrete random variables: take on only countably many possible values $a_{1}, a_{2}, \ldots, a_{n}, \ldots$.

$X(\omega)$	a_{1}	a_{2}	\ldots	a_{i}	\ldots
probability	$\operatorname{Pr}\left(X=a_{1}\right)$	$\operatorname{Pr}\left(X=a_{2}\right)$	\ldots	$\operatorname{Pr}\left(X=a_{i}\right)$	\ldots

Distribution of a random variable

The distribution of a random variable describes the probability that it takes on various values.

Definition (Cumulative distribution function)

For real-valued random variables, the distribution function or cumulative distribution function is a function $F_{X}(a)=\operatorname{Pr}(X \leq a)$

Remark: for discrete random variables: take on only countably many possible values $a_{1}, a_{2}, \ldots, a_{n}, \ldots$.

$X(\omega)$	a_{1}	a_{2}	\ldots	a_{i}	\ldots
probability	$\operatorname{Pr}\left(X=a_{1}\right)$	$\operatorname{Pr}\left(X=a_{2}\right)$	\ldots	$\operatorname{Pr}\left(X=a_{i}\right)$	\ldots

Property

- $F(-\infty)=0, F(\infty)=1$ and F is non-decreasing
- $\operatorname{Pr}(a<X \leq b)=F_{X}(b)-F_{X}(a)$
- right-continuous $F_{X}\left(a^{+}\right)=F_{X}(a)$

Example: typical discrete random variables

- Bernoulli distribution: $X \sim \operatorname{Bernoulli}(p)$ $\operatorname{Pr}(X=1)=p$ and $\operatorname{Pr}(X=0)=1-p$.

Example: typical discrete random variables

- Bernoulli distribution: $X \sim \operatorname{Bernoulli}(p)$ $\operatorname{Pr}(X=1)=p$ and $\operatorname{Pr}(X=0)=1-p$.
- Binomial distribution: $X \sim \operatorname{Binomial}(n, p)$
$\operatorname{Pr}(X=k)=\binom{n}{k} p^{k} q^{(n-k)}$, where n and p are parameters of the distribution and $q=1-p$
- Experiment consists of n trials
- Trials are identical and independent
- Constant probability for each observation

Example: typical discrete random variables

- Bernoulli distribution: $X \sim \operatorname{Bernoulli}(p)$ $\operatorname{Pr}(X=1)=p$ and $\operatorname{Pr}(X=0)=1-p$.
- Binomial distribution: $X \sim \operatorname{Binomial}(n, p)$ $\operatorname{Pr}(X=k)=\binom{n}{k} p^{k} q^{(n-k)}$, where n and p are parameters of the distribution and $q=1-p$
- Experiment consists of n trials
- Trials are identical and independent
- Constant probability for each observation

Geometric distribution

$$
X \sim \operatorname{Geo}(p): \operatorname{Pr}(X=k)=(1-p)^{k-1} p, \forall k \geq 1 .
$$

- number of tails we flip before we get the first head in a sequence of biased coin-flips.
- Fails in the first $k-1$ times

$$
\operatorname{Pr}(X=k)=(1-p)^{k-1} p
$$

- Success at the k-th time

Geometric distribution in coupon collector's problem

Problem

We repeatedly sample from a set of n distinct coupons until at least one copy of each distinct coupon is obtained. What is the expected times do we need?

Geometric distribution in coupon collector's problem

Problem

We repeatedly sample from a set of n distinct coupons until at least one copy of each distinct coupon is obtained. What is the expected times do we need?

- Sample a new object: \downarrow
- Sample a repeated object: \boldsymbol{X}
\Rightarrow success to sample a new object before previous (repeated) objects

Geometric distribution in coupon collector's problem

Problem

We repeatedly sample from a set of n distinct coupons until at least one copy of each distinct coupon is obtained. What is the expected times do we need?

- Sample a new object:
- Sample a repeated object: \boldsymbol{X}
\Rightarrow success to sample a new object before previous (repeated) objects
- $\operatorname{Pr}($ find the first unique coupon $)=\frac{n}{n}=1$
- $\operatorname{Pr}($ find the second unique coupon $)=\frac{n-1}{n}$
- $\operatorname{Pr}($ find the i-th unique coupon $)=\frac{n-(i-1)}{n}$

Geometric distribution in coupon collector's problem

Problem

We repeatedly sample from a set of n distinct coupons until at least one copy of each distinct coupon is obtained. What is the expected times do we need?

- Sample a new object:
- Sample a repeated object: \boldsymbol{X}
\Rightarrow success to sample a new object before previous (repeated) objects
- $\operatorname{Pr}($ find the first unique coupon $)=\frac{n}{n}=1$
- $\operatorname{Pr}($ find the second unique coupon $)=\frac{n-1}{n}$
- $\operatorname{Pr}($ find the i-th unique coupon $)=\frac{n-(i-1)}{n}$

Let $t_{i}=$ times to collect the i-th unique coupon after collecting $(i-1)$-th unique coupons.
$\Rightarrow t_{i} \sim \operatorname{Geo}\left(\frac{n-(i-1)}{n}\right)$.

Continuous random variable

Definition

A random variable is continuous if $\operatorname{Pr}(X=a)=0$ for any $a \in \mathbb{R}$.
Remark: not assign probability to points but to intervals

Continuous random variable

Definition

A random variable is continuous if $\operatorname{Pr}(X=a)=0$ for any $a \in \mathbb{R}$.
Remark: not assign probability to points but to intervals

- A probability density function (PDF) $f_{X}: \operatorname{Pr}(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x$.
- A cumulative distribution function (CDF) is $F_{X}(a)=\int_{-\infty}^{a} f_{X}(t) \mathrm{d} t$.

Example: typical continuous random variables

- Uniform distribution over $[a, b]$:

$$
F_{X}(x)=\left\{\begin{array}{l}
0, \text { if } x \leqslant a \\
(x-a) /(b-a), \text { if } a<x<b \\
1, \text { if } x>b
\end{array}\right.
$$

- Gaussian distribution ("most important" distribution in probability theory):

$$
F_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{x} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \mathrm{~d} x .
$$

Joint distribution

Two or more (discrete) random variables can be described using a joint distribution, which can be represented as $\operatorname{Pr}[X=x, Y=y]$ for two random variable X and Y
Marginal distribution:

$$
\operatorname{Pr}(X=x)=\sum_{y} \operatorname{Pr}[X=x, Y=y]
$$

Example

Let X and Y be six-sided dices, then $\operatorname{Pr}[X=x, Y=y]=1 / 36$ for all values x and y in $\{1,2,3,4,5,6\}$

Independent Random Variables

Definition

Two discrete random variables X and Y over $(\Omega, \mathcal{F}, \operatorname{Pr})$ are said to be independent if and only if for every x in the range of X and y in the range of Y

$$
\operatorname{Pr}[(X=x) \cap(Y=y)]=\operatorname{Pr}(X=x) \cdot \operatorname{Pr}(Y=y)
$$

