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Target of discrete probability in this module...

Problem (Coupon collector’s problem)
We repeatedly sample from a set of n distinct coupons until at least one copy of each distinct
coupon is obtained. What is the expected times do we need?

▶ randomness, probability space
▶ indicator random variable
▶ expectation
▶ tail
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Random variable

A random variable (r.v.) is any rule (i.e., function) that associates a number with each
outcome in the sample space.

Definition (Random variable is a function!)
Given a probability space (Ω, F , Pr) and a function X : Ω → R, if for any a ∈ R, we have
{ω : X(ω) ≤ a} ∈ F , then X is a random variable.
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*Recall our example in Lecture 8...

▶ case 1: a transparent box (left)
▶ case 2: half covered by opaque cloth

Z1 Z2

Z3 Z4

Z1

Z3

sample space Ω = {Z1, Z2, Z3, Z4}
▶ case 1: F1 : a collection of all subsets of Ω
▶ case 2: F2 is

F2 = {Ω, ∅, {Z1}, {Z2, Z3, Z4},

{Z3}, {Z1, Z2, Z4}, {Z1, Z3}, {Z2, Z4}}

Define a function X : Ω → R as

X(ω) =


1, if ω = Z1
1.6, if ω = Z2
4.3, if ω = Z3
5, if ω = Z4

X is a random variable w.r.t F1 but not a
random variable w.r.t F2 because

{ω : X(ω) ≤ 2} = {Z1, Z2} < F2 .
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Types of random variables

◦ A random variable (r.v.) can be either discrete or continuous
▶ discrete r.v.: has a countable number of possible values
▶ continuous r.v.: takes all values in an interval of numbers

In this module, we mainly consider discrete random variables

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 5/ 14



Indicator function

Definition
Let A ⊆ Ω, define

1A(ω) =
{

1, if ω ∈ A
0, otherwise

transform operations of sets into algebra operations!

Statement

A = B ⇔ 1A = 1B

A ⊆ B ⇔ 1A ≤ 1B

1A∩B = min{1A, 1B} = 1A1B

1A∪B = max{1A, 1B}

Example (in sorting algorithms)
For an array with size n, denote a random variable Yij with i, j ∈ [n] as

Yij =
{

1 if ai, aj are compared
0 otherwise.
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Probability Mass Function

Definition
The probability mass function (PMF) of a discrete random variable is defined as

fX(a) = Pr(X = a) = Pr({ω ∈ Ω : X(ω) = a}) .

Remark:
∑

a∈X(ω) fX(a) = 1.

Example
Consider a biased coin flipped with p for head, 1 − p for the tail, we denote

a 1 0
Pr[X = a] p 1 − p
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Distribution of a random variable
The distribution of a random variable describes the probability that it takes on various values.

Definition (Cumulative distribution function)
For real-valued random variables, the distribution function or cumulative distribution function is
a function FX(a) = Pr(X ≤ a)

Remark: for discrete random variables: take on only countably many possible values
a1, a2, . . . , an, . . ..

X(ω) a1 a2 . . . ai . . .
probability Pr(X = a1) Pr(X = a2) . . . Pr(X = ai) . . .

Property
▶ F (−∞) = 0, F (∞) = 1 and F is non-decreasing
▶ Pr(a < X ≤ b) = FX(b) − FX(a)
▶ right-continuous FX(a+) = FX(a)
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Example: typical discrete random variables
▶ Bernoulli distribution: X ∼ Bernoulli(p)

Pr(X = 1) = p and Pr(X = 0) = 1 − p.

▶ Binomial distribution: X ∼ Binomial(n, p)
Pr(X = k) =

(
n
k

)
pkq(n−k), where n and p are parameters of the distribution and q = 1 − p

◦ Experiment consists of n trials
◦ Trials are identical and independent
◦ Constant probability for each observation

Geometric distribution
X ∼ Geo(p) : Pr(X = k) = (1 − p)k−1p, ∀k ≥ 1.

◦ number of tails we flip before we get the first head in a sequence of biased coin-flips.
▶ Fails in the first k − 1 times

Pr(X = k) = (1 − p)k−1 p

▶ Success at the k-th time
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Geometric distribution in coupon collector’s problem

Problem
We repeatedly sample from a set of n distinct coupons until at least one copy of each distinct
coupon is obtained. What is the expected times do we need?

▶ Sample a new object: ✓

▶ Sample a repeated object: ✗

⇒ success to sample a new object before previous (repeated) objects
▶ Pr(find the first unique coupon) = n

n = 1
▶ Pr(find the second unique coupon) = n−1

n

▶ Pr(find the i-th unique coupon) = n−(i−1)
n

Let ti = times to collect the i-th unique coupon after collecting (i − 1)-th unique coupons.
⇒ ti ∼ Geo( n−(i−1)

n ).

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 14



Geometric distribution in coupon collector’s problem

Problem
We repeatedly sample from a set of n distinct coupons until at least one copy of each distinct
coupon is obtained. What is the expected times do we need?

▶ Sample a new object: ✓

▶ Sample a repeated object: ✗

⇒ success to sample a new object before previous (repeated) objects

▶ Pr(find the first unique coupon) = n
n = 1

▶ Pr(find the second unique coupon) = n−1
n

▶ Pr(find the i-th unique coupon) = n−(i−1)
n

Let ti = times to collect the i-th unique coupon after collecting (i − 1)-th unique coupons.
⇒ ti ∼ Geo( n−(i−1)

n ).

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 14



Geometric distribution in coupon collector’s problem

Problem
We repeatedly sample from a set of n distinct coupons until at least one copy of each distinct
coupon is obtained. What is the expected times do we need?

▶ Sample a new object: ✓

▶ Sample a repeated object: ✗

⇒ success to sample a new object before previous (repeated) objects
▶ Pr(find the first unique coupon) = n

n = 1
▶ Pr(find the second unique coupon) = n−1

n

▶ Pr(find the i-th unique coupon) = n−(i−1)
n

Let ti = times to collect the i-th unique coupon after collecting (i − 1)-th unique coupons.
⇒ ti ∼ Geo( n−(i−1)

n ).

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 14



Geometric distribution in coupon collector’s problem

Problem
We repeatedly sample from a set of n distinct coupons until at least one copy of each distinct
coupon is obtained. What is the expected times do we need?

▶ Sample a new object: ✓

▶ Sample a repeated object: ✗

⇒ success to sample a new object before previous (repeated) objects
▶ Pr(find the first unique coupon) = n

n = 1
▶ Pr(find the second unique coupon) = n−1

n

▶ Pr(find the i-th unique coupon) = n−(i−1)
n

Let ti = times to collect the i-th unique coupon after collecting (i − 1)-th unique coupons.
⇒ ti ∼ Geo( n−(i−1)

n ).

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 14



Continuous random variable
Definition
A random variable is continuous if Pr(X = a) = 0 for any a ∈ R.

Remark: not assign probability to points but to intervals

▶ A probability density function (PDF) fX : Pr(a ≤ X ≤ b) =
∫ b

a
fX(x)dx.

▶ A cumulative distribution function (CDF) is FX(a) =
∫ a

−∞ fX(t)dt.
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Example: typical continuous random variables

▶ Uniform distribution over [a, b]:

FX(x) =

 0, if x ⩽ a
(x − a)/(b − a), if a < x < b
1, if x > b

▶ Gaussian distribution (“most important" distribution in probability theory):

FX(x) = 1√
2πσ

∫ x

−∞
e− (x−µ)2

2σ2 dx .
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Joint distribution

Two or more (discrete) random variables can be described using a joint distribution, which can
be represented as Pr[X = x, Y = y] for two random variable X and Y
Marginal distribution:

Pr(X = x) =
∑

y

Pr[X = x, Y = y]

Example
Let X and Y be six-sided dices, then Pr[X = x, Y = y] = 1/36 for all values x and y in
{1,2,3,4,5,6}
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Independent Random Variables

Definition
Two discrete random variables X and Y over (Ω, F , Pr) are said to be independent if and only
if for every x in the range of X and y in the range of Y

Pr[(X = x) ∩ (Y = y)] = Pr(X = x) · Pr(Y = y)
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