
Discrete Mathematics and Its Applications 2
(CS147)

Lecture 1: Introduction to the module

Fanghui Liu

Department of Computer Science, University of Warwick, UK



Module Organizers

▶ Fanghui Liu (Week 1 to Week 5): fanghui.liu@warwick.ac.uk
▶ Ramanujan Sridharan (Week 6 to Week 10): R.Maadapuzhi-Sridharan@warwick.ac.uk

Details can be found in module webpage:
https://warwick.ac.uk/fac/sci/dcs/teaching/modules/cs147/
▶ google search: Warwick CS -> https://warwick.ac.uk/fac/sci/dcs/
▶ Teaching -> Modules Taught -> CS147

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 2/ 16

https://warwick.ac.uk/fac/sci/dcs/teaching/modules/cs147/
https://warwick.ac.uk/fac/sci/dcs/


What the module is about

▶ The word “application" in the name refers to “applications in theoretical computer science
(TCS)" and “applications in machine learning theory"

▶ This is a (completely) mathematical module.

◦ theoretical computer science: theory of computation, algorithms analysis
◦ machine learning theory:
▶ machine learning: learn rules from data
▶ theory: TCS, statistical principles

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 3/ 16



What the module is about

▶ The word “application" in the name refers to “applications in theoretical computer science
(TCS)" and “applications in machine learning theory"

▶ This is a (completely) mathematical module.

◦ theoretical computer science: theory of computation, algorithms analysis
◦ machine learning theory:
▶ machine learning: learn rules from data
▶ theory: TCS, statistical principles

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 3/ 16



Reasons to analyse algorithms
Cast of characters

4

Programmer needs to develop
a working solution.

Client wants to solve
problem efficiently.

Theoretician wants 
to understand.

Student might play
any or all of these
roles someday.

▶ predict performance
▶ compare algorithms
▶ provide guarantees

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 4/ 16

figure credit:

Princeton COS226

https://algs4.cs.princeton.edu/lectures/keynote/14AnalysisOfAlgorithms.pdf


Reasons to analyse algorithms
Cast of characters

4

Programmer needs to develop
a working solution.

Client wants to solve
problem efficiently.

Theoretician wants 
to understand.

Student might play
any or all of these
roles someday.

▶ predict performance
▶ compare algorithms
▶ provide guarantees

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 4/ 16

figure credit:

Princeton COS226

https://algs4.cs.princeton.edu/lectures/keynote/14AnalysisOfAlgorithms.pdf


Example: image recognitionPublished as a conference paper at ICLR 2015

+ .007× =

“panda”
57.7% confidence

noise “gibbon”
99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ε of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let θ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(θ,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of θ, obtaining an optimal max-norm
constrained pertubation of

η = εsign (∇xJ(θ,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ε = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ε = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y ∈ {−1, 1} with P (y = 1) = σ
(
w>x+ b

)
where

σ(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y∼pdataζ(−y(w>x+ b))

where ζ(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Figure: sensitive output by algorithms. source from [GSS15]

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 5/ 16



Contents of the module

◦ CS146: proofs, sequences, sets, relations...
◦ CS147: algorithm analysis...

▶ How to analyse runtimes of algorithms
▶ discrete probability
▶ graph theory and combinatonics

⇒ will prepare you for TCS modules in years 2,3 as well as machine learning theory

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 6/ 16



Contents of the module

◦ CS146: proofs, sequences, sets, relations...
◦ CS147: algorithm analysis...
▶ How to analyse runtimes of algorithms
▶ discrete probability
▶ graph theory and combinatonics

⇒ will prepare you for TCS modules in years 2,3 as well as machine learning theory

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 6/ 16



*Examples in TCS, ML theory

Figure: sample complexity and time complexity [CKM22].

It answers the following questions:
▶ what is the performance of this algorithm?
▶ guarantees for algorithms (under what conditions will they succeed, how much data and

computation time is needed)

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 7/ 16



*Examples in TCS, ML theory

Figure: sample complexity and time complexity [CKM22].

It answers the following questions:
▶ what is the performance of this algorithm?
▶ guarantees for algorithms (under what conditions will they succeed, how much data and

computation time is needed)

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 7/ 16



Student Cohort

▶ Core module for Discrete Maths students
▶ Optional module for Maths students

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 8/ 16



Clarifying two misconceptions

▶ Only prerequisite: Mathematical maturity
▶ I am well aware of possible overlaps with other modules and some prior background you

may already have

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 9/ 16



Lectures

Lectures (Week 1 to 10)
▶ Thursday 9:00 - 10:00 (PLT)
▶ Friday 15:00 - 16:00 (R0.21)
▶ Friday 16:00 - 17:00 (Woods-Scawen room)

After each lecture, I will provide links to
▶ recording of the lecture
▶ relevant lecture notes/online book chapters in the module webpage

Be proactive yourself

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 16



Lectures

Lectures (Week 1 to 10)
▶ Thursday 9:00 - 10:00 (PLT)
▶ Friday 15:00 - 16:00 (R0.21)
▶ Friday 16:00 - 17:00 (Woods-Scawen room)

After each lecture, I will provide links to
▶ recording of the lecture
▶ relevant lecture notes/online book chapters in the module webpage

Be proactive yourself

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 10/ 16



Seminars

9 seminars from Week 2
▶ Week 2 seminar questions will be posted in the module webpage before Monday morning

of Week 2, and so on.
▶ Try to solve the questions yourself, before attending your seminar sessions.

Seminar Groups:
▶ Group 1: Thursdays 10 am - 11 am in S0.17.
▶ Group 2: Thursdays 11 am - 12 am at OC0.05.
▶ Group 3: Thursdays 12 pm - 1 pm at H0.03.
▶ Group 4: Thursdays 1 pm - 2 pm at S0.18.
▶ Group 5: Fridays 2 pm - 3 pm at S0.10.

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 11/ 16



Seminars

9 seminars from Week 2
▶ Week 2 seminar questions will be posted in the module webpage before Monday morning

of Week 2, and so on.
▶ Try to solve the questions yourself, before attending your seminar sessions.

Seminar Groups:
▶ Group 1: Thursdays 10 am - 11 am in S0.17.
▶ Group 2: Thursdays 11 am - 12 am at OC0.05.
▶ Group 3: Thursdays 12 pm - 1 pm at H0.03.
▶ Group 4: Thursdays 1 pm - 2 pm at S0.18.
▶ Group 5: Fridays 2 pm - 3 pm at S0.10.

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 11/ 16



Some important information (I)

Grading
▶ Coursework 1: 10%
▶ Coursework 2: 10%
▶ In-person Examination: 80%

About coursework 1: will post on the module webpage.
◦ Every relevant information will be posted in the module webpage.
◦ Contact me via emails. I will respond within 2 days (if I’m not on travel).

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 12/ 16



Some important information (II)

▶ you are having problems with tabula ⇒ email DCS.UG.Support@warwick.ac.uk
▶ Only exception: You wish to change your seminar group (for valid reason). Then write an

email to DCS.UG.Support@warwick.ac.uk and cc me. In the email, explain your reason,
and specify the groups you can join (see module webpage for group numbers).

◦ valid reason: time conflicts with other lectures/seminars

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 13/ 16



Recall: Induction and recursion

▶ induction: proving some universal statements from a smaller objects
▶ recursion: applied to definition in terms of smaller objects

Example
Let n ∈ N, if n ≥ 4, we have 2n ≥ n2.

Proof by induction.
Base case, let n = 4, we have 2n = n2 = 16.
For the induction step, assume 2n ≥ n2, we need to show 2n+1 ≥ (n + 1)2 = n2 + 2n + 1.

2n+1 = 2 × 2n ≥ 2n2 ≥ n2 + 4n ≥ n2 + 2n + 1 .

□

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 14/ 16



Recall: Induction and recursion

▶ induction: proving some universal statements from a smaller objects
▶ recursion: applied to definition in terms of smaller objects

Example
Let n ∈ N, if n ≥ 4, we have 2n ≥ n2.

Proof by induction.
Base case, let n = 4, we have 2n = n2 = 16.
For the induction step, assume 2n ≥ n2, we need to show 2n+1 ≥ (n + 1)2 = n2 + 2n + 1.

2n+1 = 2 × 2n ≥ 2n2 ≥ n2 + 4n ≥ n2 + 2n + 1 .

□

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 14/ 16



Recursion

Definition (Recursion)
A problem solving technique in which problems are solved by reducing them to smaller
problems of the same form.

Example (factorial)

1! = 1 (1)

n! = n · (n − 1)! (2)

6! = 6 · 5! = 6 · 5 · 4! = 6 · 5 · 4 · 3! = 6 · 5 · 4 · 3 · 2! = 6 · 5 · 4 · 3 · 2 · 1! = 6 · 5 · 4 · 3 · 2 · 1

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 15/ 16



Example: Frog jumping problem

Problem
How many ways can a frog hop up a twelve-step staircase if the frog can hop either one or two
steps on each hop?

Solution
Denote f(n) as the number of ways that a frog hops up to the n-th stair. Clearly, f(1) = 1
and f(2) = 1 + 1 = 2.
for the n-th stair, there is only two ways to reach
▶ hop from the (n − 1)-th stair
▶ hop from the (n − 2)-th stair

⇒ f(n) = f(n − 1) + f(n − 2) . with f(1) = 1, f(2) = 2.

This is a Fibonacci sequence.

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 16/ 16



Example: Frog jumping problem

Problem
How many ways can a frog hop up a twelve-step staircase if the frog can hop either one or two
steps on each hop?

Solution
Denote f(n) as the number of ways that a frog hops up to the n-th stair. Clearly, f(1) = 1
and f(2) = 1 + 1 = 2.
for the n-th stair, there is only two ways to reach
▶ hop from the (n − 1)-th stair
▶ hop from the (n − 2)-th stair

⇒ f(n) = f(n − 1) + f(n − 2) . with f(1) = 1, f(2) = 2.

This is a Fibonacci sequence.

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 16/ 16



References I

[0] Sitan Chen, Adam R Klivans, and Raghu Meka, Learning deep relu networks is
fixed-parameter tractable, 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), IEEE, 2022, pp. 696–707.
(Cited on pages 10 and 11.)

[0] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy, Explaining and harnessing
adversarial examples, International Conference on Learning Representations, 2015.
(Cited on page 7.)

CS147 | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 1/ 1


	Appendix

